
Learning delayed-response tasks in spiking neural networks

Diplomarbeit

zur Erlangung des akademischen Grades

Diplom-Informatiker

Friedrich-Schiller-Universität Jena

Fakultät für Mathematik und Informatik

eingereicht von Jan Huwald

geb. am 27.05.1985 in Gera

Betreuer: Prof. Dr. Jochen Triesch

Jena, 25.11.2011





Abstract

Working memory is the brain’s ability to transiently store and process task related
information. Biological experiments show that working memory tasks are influenced
by the neurotransmitter dopamine which is thought to act as reward signal. Existing
in-silico models reproduce working memory abilities but not their acquisition. I show
that a working memory task can be learned using a dopamine reward. To this end
a biologically plausible recurrent spiking neural network with leaky integrate-and-
fire neurons, dopamine-modulated spike-timing dependent plasticity and intrinsic
plasticity is trained on a delayed response task. A small but statistically significant
performance increase above chance is demonstrated.
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1 Introduction

Goal-directed action in complex environments requires that our brain is able to
transiently store task-relevant information: The integration of temporally scattered
cues, acting on past events and manipulation of mental objects are unthinkable
otherwise. This ability is captured by the concept of working memory (WM) and has
been subject of intense research over the past five decades [Bad03]. Models of WM
exist across subjects and scales. Before diving into the depths of the computational
neuroscientific aspect illuminated in this thesis, let us visit selected lighthouses of
this wide research effort.

George Miller—a co-inventor of the term working memory—became famous
for two psychometric observations connected by the number seven. First, that after
a single presentation untrained humans can remember approximately seven differ-
ent entities1 for a short duration, relatively independent of the set from which those
entities are drawn (digits, letters, words) and the precise circumstances of the pre-
sentation. And second, that the cognitive channel capacity of participants classifying
one-dimensional stimuli on an absolute scale is approximately log2 7 ≈ 2.5 bits per
judgment—no matter if stimuli was visual, auditory or gustatory [Mil56].

Initially these findings were integrated into the modal model of memory. It divides
information storage into sensory, primary (short term, including WM) and secondary
(long term) storage [HM96]. But its prediction of a single, unitary working memory
was disproved by Baddeley and Hitch when they discovered that WM intensive
tasks can be executed while the participant has to hold up to eight digits—without
a major performance disruptions in one of both tasks [BH74]. This observed inde-
pendence led to the formulation of the multi-compartment model of working mem-
ory. It consists of the attention controlling central executive, the phonological loop,
the visuo-spatial sketchpad and the episodic buffer [Bad10, Bad00]. Interestingly
Baddeley describes the phonological loop as a kind of attractor: To refresh “fad-
ing memory traces” a short auditory stimulus is constantly self-rehearsed in real
time [Bad03]. This motif of operation recurs in neural working memory models.
Because unrefreshed memory is assumed to have a limited time span of existence
the working memory is limited: the rehearsal of all elements to remember must not
exceed this span, or elements will not be refreshed in time. This yields a possible
explaination for Millers seven [Bad03].

But this number can also be explained by neural scale models [LI95]. In ac-
cordance to the multi-compartmental hypothesis of WM, neural activity related to
WM has been located to different regions of the cortex, depending on the task
at hand [CUKH96, UCH98, Fus73]. Visuo-spatial working memory for example has
been shown to extensively depend on neurons in the dorsolateral prefrontal cortex by
primate physiological studies [Fus73] and brain imaging [CUKH96]. Locating WM

1In the WM literature these entities are usually called chunks of information to underline their
missing grounding in information-theoretic concepts.
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relevant regions of the brain to this precision allows recording the activity of single
task relevant neurons. The tenor of several studies is that neural activity in those
regions is elevated during the entire task—starting from the perception of the infor-
mation until its obsolescence after it has been retrieved [RM02, Fus73, HT09]. Dis-
turbing this elevated activity, drastically reduces the task performance [FBGR89].
The precise time courses of observed neural activity differ widely across studies.

Computational models of working memory can improve the situation by offering a
quantitative testbed for hypothesis. Coarse grained WM models successfully imple-
mented parts of the multi-compartment model of WM with mathematical rigor and
quantitatively tested its predictions against psychometrical observations [BH99].

Finer grained models use biologically somewhat plausible neurons to map WM
abilities to neural system dynamics. A common choice, also used in this work, are
spiking neural networks. The necessary concepts of leaky integrate-and-fire neurons,
spike-timing dependent plasticity (STDP) and its dopamine modulation as well as
intrinsic plasticity (IP) are introduced in the methods section 2.1 together with their
mathematical formulation within the developed model.

Restricting to spiking neural networks, all computational WM models2 have in
common that they implement information storage by selecting among multistable
states. They can be distinguished by the scale at which they locate those: at synapse,
neuron or network level [DSS00,MBT08].

Mongillo, Barak, and Tsodyks, 2008 suggest that the presynaptical resid-
ual calcium concentration is used for information storage3: An external cue in-
creases the spike frequency of a corresponding subpopulation of a recurrent neural
network and thereby increases the presynaptical calcium concentration of intra-
population synapses. Later, a readout signal—a small external drive given to the
entire network—reactivates the subpopulation with the highest calcium concentra-
tion, reproducing the last given input [MBT08].

A neuron scale bistability has been proposed, based on an inverted bell-shaped
voltage dependency of the synaptic efficacy. In presence of two external oscillations
of high frequency difference, neurons with two stable states (low- and high-frequent)
emerge [LI95]. Interestingly the resulting network is the only of those presented here,
which allows to hold novel stimuli [DSS00].

This thesis’ model resides on the third multistability scale: network scale expla-
nations of information storage, in which a subset of neurons exhibits changed firing
rates to hold the stimuli. There are two ideas of how to maintain this state [DSS00].
The first may be tracked back until Hebb, who proposes that a subset of the network
features a cluster of neurons with strongly excitatory, reciprocal connections [Heb49],
whereas intercluster connections are dominated by inhibition. Once most neurons of
one set are activated by an external stimuli, this recurrent topology causes enough
input current to maintain elevated firing rates, even after the external input disap-
pears, while at the same time preventing competing cell assembling from becoming
active [BW01,CBGRW00].

2known to the author
3Although this model is used as example for storage based on a synapse scale bistability, it has

to be noted that the negative feedback between different bistable units (synapses with high or
low calcium concentration) is mediated by network scale inhibition.
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The second—synfire chains—is a slight variation: instead of maintaining elevated
firing activity within a homogeneous group of reciprocally connected neurons, the
population of active neurons is further divided into subgroups connected by feed-
forward connections. One subgroup activates the next, with persistent activity
occurring if the last subgroup is connected to the first [DGA99]. Noteworthy for
working memory tasks is the property of synfire chains in a network with variable
conductance delays, that far more synfire chains may exist then neurons [Izh06].

The model developed in this thesis is agnostic to whether the information is stored
in synfire chains or recurrent excitation within homogeneous cell assemblies. Due to
the simplicity of the used leaky integrate-and-fire neuron, information storage based
on neuron or synapse scale is ruled out, however.

Learning working memory The models considered so far have been static, mostly
hand-constructed to perform an WM task. But working memory capabilities are
not given by birth. They have to be acquired over a long time span: Psychometrical
experiments show that WM performance of children increases between age 4 and
14, independent of the task [GPAW04]. During the childhood several qualitative
jumps occur, during which new interconnections between different working memory
subsystems emerges [LN98,GH93].

On a much smaller time scale, the performance is increased if the entity to repro-
duce has been encountered before [SB98]. Differences between familiar and novel
stimuli have been tracked down to neural scale: Novel stimuli produce higher activ-
ities during parts of the WM task [BGB+98,RM02].

These observations lead to the hypothesis that working memory can be learned.
The question remains how.

Dopamine—a neurotransmitter—is known to play a crucial role for learning [MHC04,
DR09] and working memory [WKH97, PAF04, GMWK07]. Dopaminergic neurons
project into several WM-relevant areas of the brain, among them the aforemen-
tioned dorsolateral prefrontal cortex [WKH97]. Several cues and hypothesis for
the role dopamine plays for working memory exist. It is known that the elevated
dopamine concentrations at the D1 receptor can induce persistent firing without
recurrent excitation [SLF+09]. This led to the hypothesis that dopamine is a switch
for a neuron scale bistability which implements WM [DH11].

But dopamine is also widely acknowledged as carrier of a reward or reward-
predictor signal [MHC04, GMWK07]. For delayed response tasks this function is
established solid enough to predict a subjects accuracy by measuring its dopamine
release [PAF04]. Dopamine is known to modulate Hebbian learning [MHC04]: in-
creased dopamine levels at D1/D5-receptors enhances long term potentiation (LTP)
and long term depression (LTD) [OL96,LMV06]. The focus of this work lies on the
role of dopamine as reward signal.

One computational model based on these observations is that of dopamine-modulated
spike-timing dependent plasticity (STDP) [Izh07]. It has been shown analytically
to be able to learn to classify spatial and temporal firing patterns [LPM08], even if
action and reward are temporally distant [Izh07]. The model is further introduced
in section 2.1.3.



1 Introduction 9

Psychological computational models have been shown to learn working memory
using a dopamine reward signal [TNC09]. For biologically plausible neural scale
models, it is an open question if working memory can be learned using such a
dopamine delivered reward signal.

Contribution and overview In this work a biologically plausible model network of
spiking neurons, governed by dopamine-modulated spike-timing dependent plasticity
is developed. It is shown that this model can learn delayed response tasks, given a
dopamine reward.

In section 2.1 the model is introduced and motivated in the light of experimental
and theoretical results. After defining the delayed response task to learn (section
2.2) a novel method for analyzing propagation of causal influence is introduced in
section 2.3. The model is analyzed using the state trajectory of individual models
variables, the global weight development (section 3.1) and the proposed causality
tracking (section 3.2). To test generality and succinctness, the model’s performance
is measured under parameter variation (section 3.3) and component omission (sec-
tion 3.4). The results are compressed and discussed in chapter 4. The software
developed for this work is presented in Appendix 8.2 to 8.5.



2 Methods

2.1 Model

The neural network model used in this work incorporates a range of dynamics of
different time scales, concepts, and authors. On a formal level it can be split into
almost orthogonal subsystems which share only a few interfacing state variables.
Along these lines the following subsections will define the model, consisting of the
neuron model, the plasticity mechanism, its reward modulation, the homeostatic
mechanism, and the network topology.

The model is a pure hybrid differential delay equation system: Differential, be-
cause variables depend on their deviation; hybrid, because the differential equations
are supplemented with well defined jump discontinuities; delay, because variables
depend on their past value; and pure, because it does not deviate from any of the
conditions above in any case.

In addition to this characterization the model also is constructed towards biolog-
ical plausibility. Beyond choosing sub-models and parameters that are experimen-
tally justified, this requires filling the gaps (where no experimental evidence exists)
obeying the metaphysical constraints locality, causality, and finiteness: causality
requires that a no variable depends on the future (or the present, in a way that
creates circular dependencies); finiteness demands finite bounds on all variables;
locality requires that a variable only depends on variables at the same site or its
superstructure.

The hybrid nature of the model implies, that to define the dynamic of a variable
x one needs to define a differential term d

d t
x and a difference term ∆x. The nonzero

positions of the difference function yield the jump discontinuities D = {t : ∆x 6= 0},
of which at most countable many may exist. The time course of x can then be
defined by iterating over D = {t0 < t1 < . . . }. For t̃ ∈ (ti, ti+1) one only needs the
differential function:

x(t̃) = x(ti) +

t̃∫
ti

(
d

d t
x) d t.

For the value at the next discontinuity ti+1 one also needs the difference function:

x(ti+1) = x(ti) + ∆x(ti+1) + lim
t̃→ti+1−

t̃∫
ti

(
d

d t
x) d t.

In the rest of this section this variable naming scheme and evaluation strategy will
be assumed without further notice.

The model is implemented in the domain-specific language of the RaSimu simu-
lator, which was developed during this work. Beyond representing elements of R as

10
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Figure 2.1: Drawing of a biological neuron, copied from [RPPD05]. Spikes travel
from left to right: Dendrites collect spikes emitted from other neurons
via synapses, which evoke postsynaptical electrical potentials. If the
spatiotemporal sum of these potentials exceeds the firing threshold at
the soma, the neuron emits a spike. After traveling the axon the delayed
spike reaches its target neurons.

floating point numbers, the simulator exactly recapitulates the dynamic of the for-
mal model. This in turn requires that every differential term in the formalism above
has an analytical integral. For the model implementation, see Appendix section 8.3;
For details on the simulator section 8.4.

2.1.1 Leaky integrate-and-fire neurons

During the short history of the field of computational neuroscience a remarkable
amount of qualitatively different models of neurons have been developed [BRC+07]:
their smallest subunits range from synapse fine structure to neuron populations.
Contemporary models may be distinguished on the way they represent the electrical
stimulation of the neuron membrane: rate based, spike based or conductance based1

(e.g. Hodgkin-Huxley) [BRC+07].
Conductance based models yield the highest level of detail and agreement with

biological experiments [BRC+07,MB01, pp 34-44]. They spatially model neurons by
dividing their surface into patches and solve biophysical partial differential equations
simulating the electrical process of the neuron membrane [MB01, pp 34-44]. The
obvious computational complexity requirements and the sheer size of the associated
parameter space render conductance based models inadequate for the qualitative
questions addressed in this work.

Rate based models have dominated the research for most of the time [MB01, pp
6-7], leading to popular abstractions like the perceptron and other fundamentals
of early artificial intelligence. Rate refers to an analog quantity, resembling the
frequency of electrical spikes between two neurons (or populations, or experiments)
[MB01, pp 7-11] and is the only quantity of information transfer in such models.

Experimental evidence of the recent years suggest that the rate based approach
is too simple for describing brain activity [BRC+07,MB01, p 7]. Instead the precise
spike timing [MS95], spike phase [Nad09, CK09], and interspike interval [MMS+09]
seems crucial for the qualitative network behavior2. These observations reinforced

1With conductance based I refer to compartmentalized variants of these models, though it should
be noted that conductance based models without spatial structure exist, too.

2These citations are only a few examples and by no means the first experiments suggesting the
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the use of spiking neural network models, whose level of detail is intermediate: the
spike rate (the single output of a neuron and input of a synapse) is replaced with the
superposition of time shifted action potentials with well defined shape [MB01, pp
5]; the temporal behavior of conductance based models is abstracted with a synapse
specific transmission delay.

Our model consists of N neurons of which each has a membrane potential ui (with
i, j ∈ 1, N for the rest of this text). The potential exponentially decays towards a
resting potential urest. I however set urest = 0 to simplify the model description3:

d

d t
ui = −uj/τu. (2.1)

The aforementioned time of an (outgoing) action potential is defined as the time
when the membrane potential reaches the firing threshold: ui ≥ uthresh. A biological
action potential has a nonzero duration with a temporal fine structure containing
a sharply rising and falling phase followed by an undershot. In my model I reduce
this shape to a Dirac δ function4. When a spike is emitted then ui is reset to the
resting potential immediately. A neurons output behavior can thus be characterized
by a set of spike times Ti defined as:

Ti := {t ∈ R : ui(t) = 0 ∧ lim
t′→t−

ui(t
′) > 0}. (2.2)

Each neuron i has Si synapses with two important properties: synaptic weight
wij(t) and transmission delay τij. A spike originating at time t from neuron i arrives
at neuron j at time t+ τij and is multiplied by wij before being applied to uj. Thus
the set Tij of times of spikes arriving at neuron j over synapse ij is:

Tij = {t : t− τij ∈ Ti} (2.3)

This set of incoming spike times is also the set of all jump discontinuities of ui whose
difference term can now be fully defined. The case denoted with (*) leads to the
creation of a new spike.

ui,input(t) :=
∑
j:t∈Tij

wij(t)

ui,pre(t) := lim
t′→t−

ui(t
′)

ui,post(t) := ui,pre(t) + ui,input(t)

∆ui(t) =

{
ui,input(t) if ui,post(t) < uthresh

−ui,pre(t) if ui,post(t) ≥ uthresh (*)
. (2.4)

The model described so far is called a leaky integrate-and-fire neuron [BRC+07,
MB01]. It integrates the current incoming from its synapses (2.5), looses its mem-

importance of the single spike.
3This does not reduce biological plausibility as the firing threshold is shifted by the same amount

and the system is invariant under this linear transformation
4By definition δ(t) = 0 for t 6= 0 and

∫∞
−∞ δ d t = 1.
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brane potential by firing an action potential if a threshold is reached (2.3) or leak it
over time otherwise. It is equivalent to the simple spiking neuron model described
in [MB01, pp 17-20] (with a zero refractory kernel ηi) and compatible with the spike
based models described in [BRC+07].

The model described so far has no refractory term beyond resetting ui to urest.
This led to frequent resonance disasters on millisecond timescales through positive
feedback. To prevent this, I add an absolute refractory period. If a neuron fires at
t then ui is not only reset to zero but forced to remain zero for τrefractory seconds. In
this time no incoming spike has any effect on the neuron. Thus 2.5 becomes:

∆ui(t) =

{
ui,input(t) if ui,post(t) < uthresh ∧ Ti ∩ [t− τrefractory, t) = ∅
−ui,pre(t) if ui,post(t) ≥ uthresh ∧ Ti ∩ [t− τrefractory, t) = ∅

. (2.5)

The absolute refractory period can be viewed as a crude approximation of the
“soft” refractory period of biological neurons.

2.1.2 Spike-timing dependent plasticity

The network of leaky integrate-and-fire neurons described so far has constant weights.
To be able to learn synaptic plasticity—any mechanism to translate network activity
into persistent weight changes—is required. In our model spike-timing dependent
plasticity (STDP) is used for this purpose. It is a temporally asymmetric form of
Hebbian learning [SG10]. Despite open questions STDP is considered a biologically
plausible phenomenological description of its experimental correlates: long-term po-
tentiation (LTP) and long-term depression (LTD) [SG10,Sho07].

The basic principle of STDP is depicted in Figure 2.2. The weight change of a
given synapse is a function of the time difference between a pre- and a postsynaptic
spike [SG10]. If the presynaptic spike precedes the postsynaptic potentiation occurs,
otherwise depression is the effect [SG10]. Note that this mechanism strengthens a
connection if a presynaptic excitatory neuron’s spike is a cause for the postsynaptic
neuron to fire. This is unison with Hebbs intention behind his famous “fire together,
wire together” rule [MDG08].

A simple mathematical formulation of the STDP principle might calculate the
weight change wij induced by a spike pair occurring at tpre

j (presynaptic) and tpost
i

(postsynaptic) as

∆wij = W (tpost
i − tpre

j ) = W (∆t) :=

{
+A+ exp(∆t/τ+) if tpost

i < tpre
j

−A− exp(∆t/τ−) if tpost
i > tpre

j

(2.6)

with ∆t = |ti−tj|. W is denoted the learning window, A+ and A− are learning rates
and τ+, τ− determine the learning window’s length. The different parameters for
the potentiation and depression case are required to match experimental correlates
[MDG08] and because of theoretical analysis on stability and long-term development
[MDG08,LPM08].

Obviously this description is ambiguously and problematic in several ways. Be-
cause the variety of phenomenologically different STDP formulations appears along
these ambiguities we will dissect them in detail below.
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Figure 2.2: The weight change of a synapse induced by a pair of pre- and postsynap-
tic spikes depends on their precise time difference. This figure is taken
from [SG10] (with small modifications).

Singularity at ∆t = 0 The rule above is silent about the case of a zero pre-
post delay. In biological systems this case can not occur because spikes are not
Dirac pulses but have a non-zero width and thus overlap instead of creating this
singularity5. However in our model for every postsynaptic spike there is at least
one presynaptic spike which occurred exactly at the same time. As this spike is the
ultimate cause for the precise time of the postsynaptic spike and we want the STDP
to reflect the causal structure, I—like Gerstner and Kistler, 2002 among many
others—chose to extend the potentiation case to ∆t = 0:

W (0) := A+. (2.7)

Spike pairing From the definition above it is unclear which spike pairings are
considered for the learning rule. A canonical extension would be to consider all
possible pairs, like

∆wij =
∑

tpre∈Tpre
j

∑
tpost∈Tpost

i

W (tpost − tpre)

with T post
i , T pre

j being the set of all spikes of neuron i and j. But this rule is in
violation of experimental results [ID03, MDG08]. A better fit results from using
the nearest neighbor pairing [MDG08]: only the ultimate last presynaptic or next
postsynaptic spike is considered for pairing. Figure 2.3 illustrates the three possible
nearest neighbor rules allowed by the ’or’.

It should be noted that STDP rules beyond pairs of spikes exist and are exper-
imentally justified [SG10, MDG08]. Namely the triplet model (interaction between

5Beyond that the metaphysical axiom of continuity would forbid singularities in the fine structure
of the STDP curve.
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two postsynaptic and one presynaptic spike) [SG10, MDG08] and the suppression
model (introduction of a STDP-modulating spike efficacy variable depending on the
precise time of presynaptic spikes) [MDG08].

However, in my model I use the presynaptic centered nearest neighbor pairing
depicted in Figure 2.3b. The weight change then is defined by

∆wij =
∑

(tpre,tpost)∈Pij

W (tpost − tpre) (2.8)

Pij := {(t, t′) ∈ Tij × Ti : @ t̃ ∈ Ti : t < t̃ < t′} (2.9)

where Pij is the set of all eligible spike pairs.
To underline the biological plausibility of this rule it can be reformulated into an

online version depending only on a finite set of variables and the current event (spike
arrival or emission) [SG10]. To this end, two additional variables are introduced:
a presynaptic xij(t) and postsynaptic yi(t) trace. The weight change can then be
formulated with the following equation system:

∆wij(t) =


A+xij(t)− A−yi(t) if t ∈ Tj ∧ t ∈ Tij
A+xij(t) else if t ∈ Tij
−A−yi(t) else if t ∈ Tj
0 otherwise

(2.10)

τ+
d

d t
xij = −xij (2.11)

∆xij(t) =

{
−xij if t ∈ Tj
+aij if t ∈ Tij

(2.12)

τ−
d

d t
xi = −yi (2.13)

∆yi = −yi + a− (2.14)

The presynaptic spikes ultimately causing postsynaptic spikes (Ti ∩ Tij) are not
covered by equation 2.12 as intended. We want their trace xij to be 0 after a
postsynaptic spike, but use xij +a+ for evaluation of ∆wij. To implement this, they
are updated twice during simulation. Note that such finite online formulations exist
for all-to-all and all three nearest neighbor pairing rules [MDG08].

The moment of application of the weight change is critical to maintain causal-
ity: a weight update must not depend on a future spike. Care is also required to
prevent a circular dependency between a postsynaptic spike and the weight change
it may induce. In accordance to Gerstner and Kistler, 2002 potentiation oc-
curs instantaneously at the creation of the postsynaptic spike and depression occurs
instantaneously when the next presynaptic spike arrives after that. In both cases
the weight update happens after the weight dependent update of the membrane
potential.

Limits of weight change are necessary because of two reasons. First the quality of
a synapse of being either excitatory or inhibitory does not change in the brain. For
our model I further require that connections between neurons neither emerge nor
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Figure 2.3: Different nearest neighbor spike pairing schemes: (A) symmetric in-
terpretation, (B) presynaptic centered interpretation, and (C) reduced
symmetric interpretation. Graphic copied from Morrison, Diesmann,
and Gerstner, 2008.

dissolve. Thus
sign(wij) = const (2.15)

is required for all weight changes. The metaphysical constraint of finiteness demands
that weights have an upper bound:

|wij| < wmax. (2.16)

Beyond that I arbitrarily (but in accordance to Izhikevich, 2007 and preliminary
experiments) choose to disable any plasticity for synapses from and to inhibitory
neurons.

2.1.3 Dopamine-modulated STDP

The STDP rule given above, allows at most unsupervised learning as no reward
or error signal exists. As indicated by biological experiments the neurotransmitter
dopamine may fit in this role [MHC04, MMB+04, SLF+09]. To transcend unsuper-
vised learning, dopamine has to have an effect on the network’s plasticity rule. Thus
in accordance with Legenstein, Pecevski, and Maass, 2008 ; and Izhikevich,
2007 (among others) we modulate the STDP intensity with the dopamine signal.
How to achieve this is detailed in the rest of this section.

The basic idea is to shift the weight change induced by STDP on the weight wij
eligibility trace cij, which stores what the STDP would have done to the weights
[LPM08]. By slowly decaying, cij is dominated by recent STDP events. The actual
weight change is then induced by the product of

d

d t
wij = cij(d− d0). (2.17)

The rest of this section describes the dynamics of eligibility trace and dopamine
level.
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The Dopamine signal d(t) is a global variable equal at all synapses in our model.
It exponentially decays towards a baseline level6 d0 [Izh07]:

d

d t
d = (d0 − d)/τd (2.18)

d, d0 ≥ 0. (2.19)

In this situation positive rewards lead to d > d0 which in turn amplifies the STDP.
Negative rewards lead to d < d0, reversing the effect of the STDP on the weights. In
the trainer no negative rewards are used. This allows us to set d0 = 0 and simplify
equation 2.17 and the decay term (2.18) to:

d

d t
wij = cijd (2.20)

d

d t
d = −d/τd. (2.21)

Reward is delivered to the system by an instantaneous change of the dopamine
level

∆d(treward) = R. (2.22)

R needs not to be a constant, but can be varied by the learning task. Its details
are described in section 2.2. It should be noted here, that to match biological ex-
periments the dopamine change R is more likely to be identified with the reward
prediction error—the difference between expected reward and actual reward—than
with the reward itself [Sch07a]. Vaguely speaking this causes LTP (LTD) only to oc-
cur, if the previous neural activity performed better (worse) than the average activity
on the given task. Note also that in this case the dopamine signal complies with
the principal characteristics of teaching signals of efficient reinforcement learning
models [Sch07b] and with some adaption would allow implementing reinforcement
learning within our neural network model [US09].

The eligibility trace cij is a variable of each synapse with the purpose of caching
the result of STDP until it is required for learning by a nonzero dopamine signal. It
allows temporal decoupling an action (the spike pair) from its evaluation (dopamine
level jump) without loosing the ability to learn in dependency of both [Izh07]. In
the mathematical framework of [LPM08] cij computes as the sum of weighted, tem-
porally shifted eligibility functions fc(t) : R→ R over all relevant spike pairs as

cij(t) =
∑

(tpre,tpost)∈Pij

fc(t−max(tpost, tpre))STDP(tpost − tpre) (2.23)

t < 0⇒ fc(t) = 0, (2.24)

6Biologically this could be implemented by a tonic dopamine supplemented with a phasic
dopamine response upon reward situations [Izh07]. A more complex biophysical model in-
volving Michealis-Menten kinetics is proposed by [MMB+04].
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where STDP (∆t) scales fc by the rules of equation 2.10 of the previous section.
They chose a whale back shaped function for fc. I however use the simpler

fc(t) =

{
exp(−t/τe) if t >= 0
0 if t < 0

. (2.25)

We can then achieve an online rule for cij, because of the pseudoadditivity of fc
under time shift:

αfc(t) + βfc(t+ ∆t) = αet/τe + βe(t+∆t)/τe | β′ = βeτe/∆t

= αet/τe + β′et/τe

= (α + β′)fc(t),
(2.26)

which allows us to reformulate the eligibility trace equation 2.23 using an ODE with
a well defined jump discontinuity for every spike pair:

d

d t
cij = −cij/τe (2.27)

∆cij(t) =


A+xij(t)− A−yi(t) if t ∈ Ti ∧ t ∈ Tij
A+xij(t) else if t ∈ Tij
−A−yi(t) else if t ∈ Tj
0 otherwise

. (2.28)

This equation system is equal to 2.23-2.25 because of the following inductive reason-
ing: between two adjacent jump discontinuities the integration of 2.27 yields αet/τe

(for some α ∈ R) and is thus compatible with fc. Given we could describe a sum of
n weighted eligibility functions fc whose peak was before t < t̃ by setting α correctly,
we could also describe n + 1 functions, with the peak of the last function at t̃ by
applying equality 2.26. Position and height of each jump discontinuity is equal in
2.23 and 2.27, because at most |{t} ∩ Tj| + |{t} ∩ Tij| ≤ 2 summands of 2.23 have
their singularity at a given time point and 2.27 covers all resulting 4 cases. This
makes the induction step. The base case of n = 0 is given with α = 0 in accordance
to an initial value of cij(0) = 0. Note, that this inductive reasoning is possible at
all, because for t′ < 0 (and thus before their singularity, on which we induce) all
fc(t

′) are zero and can be dropped.

Integral form As the integral form of wij is not totally obvious it will be derived
here. Given R is the set of all reward time points (discontinuities of d), then the set
of discontinuities of wij is Tj ∪ Tij ∪ R. Between two adjacent discontinuities at t0
and t1 the integral of equation 2.20 is:

wij(t̃)
∣∣
t̃<t1

= wij(t0) +

t̃∫
t0

(
d

d t
wij) d t (2.29)

= wij(t0) +

t̃∫
t0

cijd d t
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= wij(t0) +

t̃∫
t0

cij(t0)e−(t−t0)/τed(t0)e−(t−t0)/τd d t

= wij(t0) + cij(t0)d(t0)

t̃∫
t0

e
− τd+τe

τdτe
(t−t0)

d t

= wij(t0)− cij(t0)d(t0)
τdτe
τd + τe

[
e
− τd+τe

τdτe
(t−t0)

]t̃
t=t0

= wij(t0) + cij(t0)d(t0)
τdτe
τd + τe

(1− e−
τd+τe
τdτe

(t̃−t0)
).

2.1.4 Weight normalization

Despite enforcing weight bounds (eq. 2.16) on individual synapses, our plasticity
rule can still degenerate the network: unless the eligibility trace is precisely tuned
all weights may become extremal. A common way to mitigate these effects is weight
normalization: the total weight projecting into a neuron is held constant:∑

j

wij = Wj = const. (2.30)

Beyond a stability mechanism, weight normalization is a computational tool in
itself: for time discrete neural networks it has been shown to yield principal and
independent component analysis (PAC, INCA) when used with Hebbian learning
[Oja82, KOW+97]. It the time discrete case it can be implemented by Oja’s rule
[Oja82]

wij(t+ 1) =
wij(t) + ∆wij(t+ 1)(∑

k(wkj(t) + ∆wkj(t+ 1))p
)1/p

W
1/p
j (2.31)

with any p ≥ 1 characterizing the used p-norm7. The canonical adaptation to
our continuous-time model is to apply this rescaling each time a spike arrives at a
synapse and thus causes a weight change—although the weight changes continuously
in between, we only need to know it when updating the membrane potential.

But this would force us to perform a computationally expensive summation over
all synapses for each incoming spike. Avoiding this requires us to allow temporary
violations of equation 2.30. So the instantaneous weight sum Si is stored in the
neuron and together with the known initial weight sum S0

i = Wi this allows us to
rescale only the synapse affected by an incoming spike:

∆wnorm
ij = wnorm

ij

S0
j

Sj
− wnorm

ij + ∆wij (2.32)

= wnorm
ij (

S0
j

Sj
− 1) + ∆wij (2.33)

7Oja, 1982 used p = 2 to implement a PCA, whereas Karhunen et al. required p = 3 to achieve
an ICA. The weight normalization alone works for any p ≥ 1.
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∆Sj = wnorm
ij (

S0
j

Sj
− 1) + ∆wij (2.34)

S0
j = Sj(0) =

∑
i

wnorm
ij (0) (2.35)

(2.36)

with ∆wij referring to the intended weight changed induced by the previously
described plasticity rules and wnorm

ij the normalized weight.
By comparing equations 2.33 and 2.34 we see that Sj =

∑
iw

norm
ij holds during

the entire simulation, if the initial weight sum is set up according to eq. 2.35. For
∆wij ≈ 0 (a condition met during most of the time, as dopamine reward is scarce)
and with the knowledge that we apply weight normalization only to those positively
weighted synapses that are affected by synaptic plasticity mechanisms, eq. 2.34
implies that Sj asymptotically converges to S0

j . Note that this weight normalization
scheme easily allows us to incorporate our weight bounds (eq. 2.16). See section 8.3
for the implementation.

Besides this theoretical argument, the preservation of the weight sum has also
been empirically verified during simulations of the model.

2.1.5 Intrinsic Plasticity

The recurrent network’s dynamic is highly dependent on the stability of its own
activity. In preliminary experiments a very fine tuning was necessary to keep the
network in the desire frequency range. To reduce this parameter sensitivity (and
make learning possible at all, as we will see in section 3.4) I augment the model with
intrinsic plasticity.

Intrinsic plasticity describes processes that change the neurons excitability—in
contrast to the aforementioned plasticity mechanisms, which all modify the synaptic
transmission efficacy [Tri05]. This form of plasticity has been observed in biological
neurons [VWVHW04]. Beyond its role as homeostatic mechanism, it has been mo-
tivated by showing that it maximizes information transmission under a fixed energy
budget [Tri07]: the entropy of distributions with fixed mean (a fixed energy budget)
is maximized for an exponential distribution. The Triesch IP rule thus works by
matching the first statistical moments of the observed distribution to that of an
exponential [Tri05,Tri07].

We achieved this for our model by changing the firing threshold from uthresh to a
neuron-specific value uthresh +Λ1,i and dividing the applied weight for each incoming
spike by Λ2,i (∆ui = wji/Λ2,i). After each evoked spike the IP coefficients Λ1,i and
Λ2,i are updated by

∆Λk,i = λk

∫ t1

t0

fki − µk d t (2.37)

= λk(t1 − t0)((t1 − t0)−k − µk) (2.38)

for k = 1, 2; the instantaneous firing rate fi = (t1 − t0)−1; and the k-th statistical
moment µk of the desired exponential distribution.

Using simulations this rule has been empirically verified to produce the desired
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Table 2.1: Valid ranges for the synaptic weight and transmission delays depending
on the type of source and target neuron

postsynaptic
excitatory inhibitory

wij [mV ] τij [ms] wij [mV ] τij [ms]

presynaptic
excitatory [0, 4] [1, 5] [0, 3.6] [0.1, 0.5]
inhibitory [0, 3] [0.1, 0.5] {0}

output characteristics (
〈
fki
〉
≈ µk for k = 1, 2) for individual neurons after a settling

period. But applied to a whole network of such neurons it produced strong oscilla-
tions and put the model into a pathological regime (see section 3.4). In consequence
I choose to disable matching the second moment (λ2 = 0), ultimately reducing the
intrinsic plasticity to a mechanism adjusting a neuron’s firing threshold to achieve
a desired mean frequency.

2.1.6 Network topology

So far we have only covered aspects of the building block of neural network: the
neuron. But the specific choice of connection topology—encoded in synaptic weights
wij and delays τij—is at least equally important for the network dynamics. Topology
determines if the overall behavior will be dead, chaotic or Turing complete [CR07].
Beyond existence at all also the precise weight distributions matters at lot: Brunel
was required to finely tune the weights of his working memory model using mean
field analysis [BW01]. Izhikevich argues that the same attention should be drawn
to the precise distribution of the transmission delays, because this enables delay
equations with infinite dimension and shows qualitatively different behavior in a
model with biologically inspired synaptic delay distribution [Izh06]. For our model
I consider the topology as well as precise delay and weight distribution as essential
properties and aim to model them biologically plausible resembling a cell ensemble
of the neocortex.

Our model consists of 1000 neurons—an order above the neuron count of a cor-
tical minicolumn and below a cortical column [Rak08]. 800 are excitatory and 200
inhibitory, resembling the cortical proportion of pyramidal neurons and interneu-
rons [BS98]. Two neurons are connected (wij 6= 0) with a 0.1 probability, yielding
100000 synapses or about 100 incoming and outgoing synapses per neuron. Note
that this leads to a highly recurrent network: for each neuron pair there is a 1%
chance of forming a direct feedback loop.

If a connection ij exists, its weight and delay is equally distributed in an interval
that depends on the type of source and destination. The precise values can be found
in table 2.1.

The excitatory delay values mimic cortico-cortical axonal delays [Izh06]. The
tenfold reduction of inhibitory delays is motivated biologically [BS98] and by expe-
rience from our model. Without the delay asymmetry the network would experience
repeated patterns of a runaway reaction producing a dead network caused by a col-
lective refractory period occurring after all neurons fired within a 10ms window.
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Table 2.2: Model constants

description symbol value

resting potential 0
firing threshold uthresh 15mV
membrane potential decay τu 50ms
absolute refractory period τrefractory 1ms
transmission delay τij per synapse
dopamine decay τd 5ms
learning window (LTP) τ+ 14ms
learning window (LTD) τ− 34ms
eligibility trace decay τe 100ms
LTD coefficient A+ 1.03 · 10−4

LTP coefficient A− 0.55 · 10−4

LTD coefficient a+ 1
LTP coefficient a− 1
maximal weight wmax 4mV
target frequency 10 Hz
IP coefficient (mean) λ1 5 · 10−5

IP coefficient (variance) λ2 0

The synaptic weights can not be directly adopted from a biological prototype,
because they coarsely abstract different phenomena8. Dimension analysis constrains
the weight to the unit of the electrical potential. With this motivation, I adopt the
range of our weight values to the strength of postsynaptic potentials of biological
synapses: on the order of 1mV [LSW81]. The exact cap at 4mV is motivated
by [Izh07].

The precise weight intervals are determined to set the average spiking frequency
to 10 Hz . This value is within the range of frequencies observed in the cortex [Fus73,
RM02]. The target frequency for the intrinsic plasticity is set to 10 Hz , too.

2.1.7 Model overview

The model specified step by step during the last sections is summarized in the tables
2.2 and 2.3 below. For readability the weight scaling mechanism and weight bounds
have been omitted. They can be found in the translation of the model into the
domain specific model description language of the simulator in Appendix 8.3.

8Among others: synapse types, ion channel count and properties, neurotransmitter reflux, and
electrical properties of the postsynaptic membrane up to the axon hillock.
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2.2 Learning task

The learning task is modeled after neurophysiological delayed response experiments
[Fus73]: One of two cue stimuli is given for a short period (cue period, tc) after
which the subject has to wait (delay period, td) until another stimulus signals that
it should act on the remembered stimulus. Within a short time span (response
period, tr) after the second stimulus the subject has to perform the correct of two
actions—the one associated with the initial stimulus9. If the response is correct and
in time the subject is immediately rewarded. After a short break (intertrial period,
ti) the experiment may be repeated. Learning among which actions to choose (e.g.
learning to push one of two levers instead of drumming against the cage) is typically
performed before the experiment takes place [JN37].

The sensory and motor skills to complete such a task are outside the scope of
this work. For our model sets of 100 excitatory neurons are randomly selected to
receive and emit each input and output signal, respectively. As this corresponds to
our (physiologically plausible) neural fan in and out, they can be thought as model-
external neurons which project into the simulated network (stimulus) or out of it
(response).

To give a stimuli an additional 40 Hz Poisson noise (independent and exponen-
tially distributed interspike timing) with 8mV amplitude for tc = 50ms is delivered
to each neuron of the corresponding input set. To read out the response of the
network a readout stimuli is applied in the same way for tr = tc = 50ms to a differ-
ent set of 100 excitatory neurons. Afterwards we sum the number of spikes evoked
during that time for each output set. The model’s response is correct iff. the spike
count for the output set corresponding to the last input set has more spikes than all
other output sets. A draw is interpreted as wrong answer.

Let Ii, R, Oi be the sets of 100 randomly chosen excitatory neurons for cue
stimulus, readout stimulus and response output and rand(t) a random time a equally
distributed over [0, t]. Then each training trial is executed as follows:

1. Select symbol i to be remembered during the trial.

2. Deliver random noise to all neurons of Ii for tc seconds.

3. Wait td + rand(50ms) seconds

4. Deliver random noise to all neurons of R for tr seconds.

5. Count spikes for all output sets: Ak(t) :=
∑

n∈Ok |Tn ∩ [t− tr, t]|.

6. If Ai(t) > Aj(t) for all j 6= i, increase the dopamine level by δd.

7. Wait ti + rand(500ms) seconds

The training is started after letting the network settle for 50 s and then repeated
indefinitely. It should be emphasized that the network has no a priori knowledge

9Typically the correct action’s association with the initial stimuli is not arbitrary, but can be
explained by a homeomorphism. For example a subject has to look exactly at that spot which
previously lit up, not at some arbitrary chosen place. This notion of a “meaningful mapping”
is inapplicable to neural models of this work’s scale.
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which neurons are responsible for input and output. And that these sets are not
even disjunctive: By choosing the neurons for each set independently, each pair of
sets has on average 12.5 neurons in common.

2.3 Causality analysis

For analysis of the model, it is of interest to discover the flow of information from
input to output neurons. In our model all task-relevant information is transported
by spikes—no other mechanism of information transfer between neurons exists10.
More precisely, we can make the following two observations about causal influence
during a single delayed response trial, after assuming that intrinsic plasticity is slow
compared to the time of single trial (Λk ≈ const). For mathematical brevity we
assume Λ1 = 0 and Λ2 = 1 for the rest of this chapter.

1. During a trial, the dopamine level can be assumed as d = 0 for all practical
purposes. Thus all synaptic weights wij are constant. Thus the membrane
potential ui and with it a neurons activity depends only on constant values
and the time of incoming spikes.

2. Because the postcondition of an outgoing spike is ui(t) = 0, no information
about the past beside the precise value of t is stored in the neuron. This
allows to completely explain (the time t of) each spike by the time t′ of the
preceding outgoing spike of the same neuron and the time of all incoming
spikes in between:(

t′ = min(Ti ∩ (t,∞))
)

(2.39)

⇔
∑
ĩ

∑
t̃∈Tĩi∩(t,t′]

wĩie
(t̃−t′)/τu ≥ uthresh

∧∀t′′ ∈ (t, t′) :
∑
ĩ

∑
t̃∈Tĩi∩(t,t′′]

wĩie
(t̃−t′′)/τu < uthresh

∧ t ∈ Ti

=f(t′, Ti ∩ {t},
⋃
ĩ

Tĩi ∩ (t, t′]) (2.40)

=f(t′, Ti ∩ {t},
⋃
ĩ

{t̃+ τĩi : t̃ ∈ Tĩ ∧ wĩi 6= 0} ∩ (t, t′]). (2.41)

In plain English, equation 2.39 states that neuron i will fire at t′ for the first
time since the last spike iff. the membrane potential ui exceeds uthresh at t′.

Based on these observations we can define a causal digraph G in which two spikes
(t, i), (t′, j) are connected, iff. the former is required to explain the later as of equa-

10The dopamine reward actually is a mechanism of information transport across neurons that does
not rely on spikes. But as the reward is only given after each trial, this transport can not be
used to solve the delayed response task and is thus not considered in this analysis.
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tion 2.41:

G := (V,E), (2.42)

V := {(t, i) : t ∈ Ti}, (2.43)

E := {((t, i), (t′, j)) : wij 6= 0 ∧ t ∈ Ti ∧ t′ = min(Tj ∩ [t+ τij,∞))}. (2.44)

From knowing that causation is transitive11 and that the edges of G exactly reca-
pitulate the requirements for direct causation of equation 2.41, we can conclude that
a spike v may only have causal influence on another spike v′, if a directed path from
v to v′ exists in G. In other words: all spikes for which no directed path to v′ exists
could be suppressed without changing the occurrence or time of v′ at all. It has
to be emphasized, that the existence of such a path is a necessary, not a sufficient
condition for causal influence. We can view the causal graph as upper bound of the
influence of spikes on each other.

Unfortunately this graph is very dense12. We assume causation solely based on
spike times. Thus all spikes of a synapse with arbitrarily small, nonzero weight would
be considered causative, although their suppression would almost never have an
effect. To improve our upper bound for causation we will consider the contribution
of each incoming spike to the potential at the soma ui at the moment it exceeds the
firing threshold.

To this end we annotate spike pairs (v, v′) (edges in G) with an “egal”-value,
that describes how many arbitrarily selected spike pairs (v′′, v′) we can suppress,
before suppressing the arrival of spike v (deleting edge (v, v′)) would influence the
occurrence of spike v′.

Definition (q-egal) Given a causal graph G = (V,E) and an edge ((̃i, t̃), (i, t)) =
(ṽ, v) ∈ E, then (ṽ, v) is q-egal iff.

∀q′ ≤ q∀S ′ ⊂ S : (|S ′|+ q′ ≥ |S| ⇒ (A(S ′) = A(S ′ ∪ {(ṽ, v)})) (2.45)

S := {v′ : (v′, v) ∈ E ∧ v′ 6= ṽ},

A(S ′) :⇔ ∃ ts ∈ R :
∑

(t′,j)∈S′

t′+τji≤ts

wjie
(t′+τji−ts)/τu ≥ uthresh

where S is the set of spikes arriving at i before v but after its predecessor. A(S ′) is
true iff. the set of spikes S would have caused a spike at any time.

By denoting the q-egal-value of an edge using q we can introduce a q-reduced
graph of G = (V,E), in which all edges that are more than q-egal are deleted:

q((v, v′)) =min{q : is q-egal in G} (2.46)

11Beside being obvious, this can easily be seen by applying equation 2.41 recursively to itself
12The probability that two neurons have a direct connection is 0.1. And with an average of

100 synapses per neuron the chance that two neurons are connected through a third one is
1− (1− 0.12)100 ≈ 0.63. Thus for two spikes at t1, t2 the probability of being causally related
according to G rises quickly to one if both are temporally separated by significantly more than
the average transmission delay (|t2 − t1| � τij)



2 Methods 27

1

2

3
4

t

u

Figure 2.4: A neuron’s membrane potential trajectories leading to different time
points of spike evocation under suppression of individual incoming spikes.
In the undisturbed case (solid line) three excitatory and one inhibitory
spike lead to an outgoing spike at (1). Suppressing the first incoming
spike (tightly dotted line) has no effect on the outgoing spike (2). Sup-
pressing the inhibitory second spike (dotted line) causes the outgoing
spike to occur earlier (3), whereas suppressing the excitatory third spike
(dashed line) delays it (4). Except for the first one, all spike arrivals are
0-egal.

q((v, v′)) =∞ :⇔ ∀q ∈ N : q((v, v′)) > q (2.47)

Gq := (V, {e ∈ E : q(e) ≤ q}). (2.48)

The intent of these definitions becomes clearer after some observations and an
illustrated example depicted in Figure 2.4:

1. If an edge (v, v′) is 0-egal, then deleting it13 will cause v′ not to occur.

2. For each spike, up to q incoming edges e with q(e) ≥ q can be deleted without
altering its occurrence. Any number of ∞-egal edges can be deleted without
altering the occurrence of any spike in G.

3. Let G ≺ G′ denote that G is a sub-graph of G′, then

G0 ≺ . . . ≺ Gi ≺ Gi+1 ≺ . . . ≺ G∞ ≺ G. (2.49)

Which graph we use for further analysis depends on our stance on the definition
of causality. If we call a spike pair non-causative only if the simultaneous removal
of all non-causative spike pairs shall have no effect on the network, then we have
to restrict ourselves to G∞. This view corresponds to a physical interpretation
of causality, where nothing outside the past light cone can have an influence on
an event, no matter how much the outside universe is perturbed. In other words,

13Deletion of edge ((t, i), (t′, j)) is equivalent to suppression of the arrival of a spike (t, i) at
synapse ij.
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after removing all edges ∞-egal edges from G, the remaining spike pairs would still
produce exactly the same trajectory as the original model.

If on the other hand we think the q-egal-value as a quantitative measure related
to the resilience against small network perturbations, then Gq contains those spike
pairs whose suppression might change the network evolution, after (up to) q other
arbitrarily choosen spikes from G have been surpressed. In the extreme case G0 one
can not take away a single spike pair without altering the networks behavior. The
edges in G0 can be thought of as the set of most important spike pairs from a q-egal
perspective.

Fortunately it is easy to decide which graph to use: Computing Gq for unbounded
q is NP-hard. A proof is outside the scope of this work, but the proof idea is to
reduce Subset-Sum to computing G∞. Given a set S ⊂ N and a number T ∈ N,
Subset-Sum is the question if

∃S ′ ⊂ S : S ′ 6= ∅ ∧
∑
s∈S′

s = T. (2.50)

It is known to be NP-hard [CJL+92]. The proof idea is to set uthresh = 0 and to
add a spike with weight −s at t = 0 for each s ∈ S. At a later time after that a
membrane potential of −T would have decayed to almost zero, we add three probe
spikes, separated by some delay. The weights of the spikes is arranged so, that the
first probe spikes causes a spike if u(0) ≥ T + 1, the third if u(0) ≤ T − 1 and
the second in the remaining cases u(0) ∈ (T − 1, T + 1). Due to u(0) being a sum
of integers, the second probe spike can only cross the firing threshold if u(0) = T .
Thus iff. the second spike is not ∞-egal, there exists a subset of S whose sum is T .

In contrast, computing G0 is possible in O(|E| log |E|) with |E| being the number
of edges in G—the number of spike arrivals in the simulation. To this end we
normalize all spike arrivals to unit weight wij = ±1 by shifting their arrival time t
to t+ ∆t:

|wije−∆t/τu | = 1

⇒ ∆t = τu log |wij|. (2.51)

By equation 2.1 such a normalized spike arrival has the same effect on the membrane
potential as the original one for any t′ ≥ t.

The devised algorithm then works as follows: For each neuron, it iterates over all
spike arrivals in temporal order. If a spike arrival is inhibitory, then suppressing it
can not cause an immediate spike but potentially allow a later excitation to reach the
firing threshold. We thus store the time of the normalized spike in the temporally-
sorted binary tree Binh. At each excitatory spike arrival we compute the minimal
arrival time of a normalized inhibitory spike whose suppression would cause our
neuron to fire now. Every inhibitory spike arrival in Binh with an equal or higher
time is marked 0-egal and removed from the tree. We then store the normalized
time of the excitatory spike in binary tree Bexc and proceed to the next spike.
Once we reach the spike arrival that causes the membrane potential to exceed the
firing threshold, we mark it 0-egal and compute the minimal time of a normalized
excitatory spike whose suppression would cause our neuron to not fire now. Every
excitatory spike arrival in Bexc with an equal or greater time is marked 0-egal and
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removed from the tree. The remaining elements in Binh and Bexc are not 0-egal and
can be removed from G0. For each edge in G the algorithm requires two insertions,
two deletions and two lookups in binary trees. The binary tree size is bounded by
|E|. Enumerating all edges of the graph for iteration in temporal order is possible
in O(1) per edge. By maintaining one Binh and one Bexc for each neuron, spikes of
all neurons can be marked in parallel. The time requirement is thus O(|E| log |E|).



3 Results

The neural network model developed in chapter 2 has been numerically simulated.
It achieves a small but significantly above-chance performance in the posed delayed-
response tasks after a brief learning period. The preconditions, characteristics, and
mechanisms of this ability are illuminated in the following sections.

In section 3.1 the detailed dynamics of a single simulation run are examined. The
causal digraph of a simulation run is analyzed in section 3.2. Section 3.3 gives an
overview of the performance under varied tasks, answering the question for how long
information can be retained. Finally, different model simplifications are proposed.
Their lack of achievement is summarized in section 3.4.

The software developed for simulation and analysis is described in Appendix 8.4,
together with a design rationale and highlighted code excerpts. The simulator of-
fers a domain specific language (DSL) in which all model variants are expressed
(see Appendix 8.2). The implementation of the mathematical model description of
chapter 2 in this DSL can be found in Appendix 8.3.

3.1 An exemplary run

Figure 3.1 shows the performance development of the default model, averaged over
8 runs with different initial random seeds as well as a single run, which will be
analyzed in detail in this section. After 500 s and on average 327 task trials, those 8
simulations correctly answered 53.5% of the delayed response tasks during the next
500 s. Beyond the first 1000 s the accuracy remained constant.

This result is small, but significantly above chance. During 500 s of simulation,
on average 367 task trials are executed, 2909 in total over 8 simulations. The perfor-
mance of randomly guessing is described by a Bernoulli process: n independent
trials of equiprobable outcome 0 (wrong guess) or 1 (correct guess). So the number
of correct guesses k over n trials is binomially distributed with mean 1

2
n and stan-

dard deviation 1
2

√
n. Chance performance is thus of mean µ = 0.5 and standard

deviation σ = 1
2n

√
n = 0.65%. The achieved performance is 5.4σ above chance

performance.

The simulation with random seed 0, depicted in 3.1b achieved a mean performance
of 57.4% (4.0σ) during 500 s ≤ t ≤ 1000 s, making it a perfect candidate for detailed
analysis. In Figure 3.2 the time course of each model variable of a representative
synapse and neuron is shown for 1000 s simulation time, as well as a 1 s-period
during which the network receives a stimuli and gives the correct answer. The
chosen neuron belongs to the wrong-output set for this stimuli, but no other set.
The shown synapse projects from another wrong-output neuron to this one.

For the selected neuron, the intrinsic plasticity coefficient settles after 50 s to
Λ1 ≈ −7mV , reducing the effective firing threshold to uthresh+Λ1 ≈ 8mV . Nonethe-
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Figure 3.1: Model performance over 1000 s training, including 692 task trials: (a)
mean performance, average over 100 s-intervals and 8 simulations with
different random seed; (b) exponential performance average (λ = 0.9) of
a single simulation (seed: 0). Both plots include a linear regression with
y-intersection held at 0.5.

less the network is dominated by inhibitory activity, keeping the mean membrane
potential at −8.2mV .

The total weight change of the portrayed synapse during the 1000 s training in-
terval is +0.30mV or +7.5% of the maximal weight. The weight rises continuously
over the whole training period, although 24% of the weight change are caused by 10
jumps. In the 1 s-plot, the weight change effects of the weight normalization can be
seen: only one of the many jumps occurred due to a dopamine triggered takeover of
the eligibility trace to the synapse’s weight. The major weight changes are mediated
by weight normalization. The weight seems to change even when the dopamine level
is zero, but this is an simulation artifact1.

In the shown 1 s-time frame, the neuron fires neither during input nor readout
phase, but during readout the membrane potential is significantly increased. The
intensive firing prior to the input phase has no connection to any training trial. It
is one example of the highly self-exciting activity induced by the recurrent network
topology.

1For the sake of simulator efficiency, the dopamine reward is not signaled to a synapse until it
receives a spike the first time after the reward. The resulting weight sum change at the neuron
is signaled to its other synapses only once they receive a spike. In this scheme a synapses
own eligibility trace is always correctly accounted for the weight applied a the neuron, but the
weight scaling stays

〈
f−1

i

〉
behind (with f = 10 Hz target frequency). Which—given the small

magnitude of weight changes—is negligible.
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Figure 3.2: (Left page) Time course of all model variables for an example instance.
The left column shows the whole simulation (time step 0.5 s). The right
column shows a 1 s-closeup, during which a trial takes place (time step
0.5ms). The input and readout period is highlighted green and red,
respectively.
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Figure 3.3: Inverted cumulative weight distribution after 1000 s training. (a) Weight
distribution of all excitatory-excitatory synapses at t = 1000 s (solid)
and t = 0 (dashed). In plot (b)-(d) the cumulative distribution of (a) is
subtracted from the shown distributions. They show
(b) input→output (solid), input→wrong output (dashed),
(c) neutral→output (solid), input→neutral (dashed),
(d) output→output (solid), and readout→output (dashed)
synapses, where neutral refers to all excitatory. Each group’s weight is
sampled over 900 synapses. The relative weight change of each synapse
class is shown at the bottom.

To visualize how the repeated training had shaped the network and understand
why it achieved an above-chance performance, the cumulative weight distribution
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after 1000 s simulation time is illustrated in Figure 3.3 for several groups of synapses.
To this end we consider five classes of neurons and the synapses between them: input,
readout (receiving the readout stimulus), output, wrong output and neutral. The
last refers to all excitatory neurons.

Figure 3.3a shows that the weight distribution becomes more extremal over time:
after 1000 s simulation 16.2% of all synapses are within 1% of the extremal values
(0, 4mV ), compared to 2% at t = 0. The approximate rotational symmetry of the
curve can be ascribed to weight normalization.

In Figure 3.3b one can see that the weight evolution of synapses from input
to output neurons is anti-correlated to that of input to wrong-output neurons:
input→output connections gain strength, whereas input→wrong-output connections
are weakened. As the activity of output neurons has no special influence on the net-
work besides causing the dopamine reward, the later is the only way the network
could have learned to differentiate between both groups.

In the three Figures 3.3b-d the relative cumulative weight distribution of all
synapse groups is subzero for upper half of the plot, except for input→neutral
synapses. This implies that the weight increase for synapses above 2mV weight
occurs primarily for neutral→neutral and input→neutral connections.

The weight gain of output→output-synapses in the 0-2mV range is strongly
above the average (Figure 3.3d). During the simulation it increased by 2.64%the
strongest increase of all synapse classes analyzed. The anti-correlated weight sum
of readout→output synapses has the strongest weight loss of all: −1.59%.

The weight-increase of intra-group connections for neutral and output neurons
hints at the possibility that one of them (or both) may house neuron ensembles that
maintain the input signal. For the output neuron group the fact that input→output
weights grow, hardens this suspicion: Increased activity is required more than 250ms
after input stimulation. After this time period an elevated membrane potential of
output neurons has long been decayed or been reset by emitted spikes.

To examine this hypothesis, we can look at the mean firing rates of three neuron
groups during successful trials: neurons of the correct-output group, the wrong-
output group and neutral neurons (Figure3.4). During input stimulation all three
groups follow the same trajectory rather precisely: fast rising frequency during stim-
ulation and a rapid drop afterwards. The common fate ends 50ms after the termina-
tion of input stimulation. From then on, the frequency of the correct-output neurons
is slightly above the still-intertwined trajectories of the other two groups. A second
qualitative behavioral change occurs approximately 240ms after the trial starts: a
short frequency jump of all group’s firing rate. Afterwards the correct-output neu-
ron’s frequency is still elevated above the network’s average, but additionally the
wrong-output neurons fire less frequently then both other groups. The difference in
firing rate between neurons of correct and wrong output is maintained during the
readout phase, although both groups show an absolute increase in the firing rate
due to readout stimulation.

3.2 Application of causality tracking

To further understand the inner working of the model I have applied the causal
graph analysis introduced in section 2.3. To this end the causal graph G0 has been
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Figure 3.4: Firing rates during correctly solved trials of neurons of the correct output
group (solid), the wrong output group (dashed) and a 100-neuron sample
of all excitatory neurons (dotted). The frequency is computed in 10ms
time bins and averaged over all 352 successful trials. The time is relative
to the onset of input stimulation (t = 0). Colored background denotes
the application of input stimulus (green) and the time window during
that the 50ms readout window occurs (red).

computed for the simulation run analyzed in detail in the preceding section.

Let us first examine the fraction Q of 0-egal spike arrivals among the set of all
spike arrivals. Initially we find Q = 29.3% of all spike arrivals to be 0-egal (sampled
over 0 ≤ t ≤ 10 s). After the network is settled (50 ≤ t ≤ 60 s) the fraction is
reduced to Q = 26.8%. During training Q slowly decreases. After 940 s training
Q = 23.9% of all spike arrivals are 0-egal (990 ≤ t ≤ 1000 s). The time course of Q
computed for 1 s time bins can be seen in Appendix figure 8.1. One can see that Q
is falling fast during the settling period and slowly during the rest of the simulation.
The standard deviation of Q between 1 s time bins is 0.0130 or 5.24% of the mean;
Computed over 1000 s, the fraction of 0-egal spike arrivals is Q = 24.9%.

In the right part of Figure8.1, we can see the short term dynamic of Q during a
trial, computed with 25ms time bin and averaged over all trials. Due to the high
standard deviation, the suggestive increases of Q after input and readout stimulation
are highly insignificant.

Finally the causal graph has been colored, to track how information is transmitted
from the input neurons during stimulation to the output neurons during the readout
phase. To this end, all external spikes belonging to the input stimulus are marked.
Then iteratively all spikes are marked that are causally influenced by a marked spike
(share an edge with it in G0). As edges in the causal graph point temporally forward,
the procedure is complete once the last spike of the readout phase is reached. One
can think of this coloring as the set of causally-relevant spikes, as opposed to the
set of causally-relevant spike arrivals we considered so far. The coloring would help
us to discover the spatiotemporal subset of neuronal activity that holds the input
stimulus.
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Figure 3.5: Mean performance of 4 runs over 1000 s in dependency of several model
constants (left to right, top to bottom): (a) delay period td, (b) dopamine
reward δd, (c) eligibility trace decay constant τe, and (d) membrane
potential decay constant τu. The x-axis is logarithmic in all plots. The
upper standard deviation of chance performance (µ+ σ) is marked with
a dashed line. The simulated model is the default model except for the
varied parameter. In all four cases, the value chosen for the default
model exhibits the biggest performance.

Unfortunately, the application of this algorithm to the causal graph of our model
leads to marking almost all spikes (> 99.9% in every trial) as relevant even before
readout stimulation is over. Given the nonexistent expressiveness of this coloring a
detailed structural analysis of the colored causal graph makes no sense.

3.3 Performance stability

To be of a general purpose, it is crucial that the network’s performance is insensitive
to small parameter changes and not tuned towards a very narrow class of tasks. To
learn more about the ability of the network in this regard, the performance has been
measured for various delay periods td and dopamine rewards δd, and decay constants
of eligibility trace τe and membrane potential τu. The results are depicted in Figure
3.5.

In Figure 3.5a the expected inability store information for long periods (td ≥ 1 s)
can be seen. Surprisingly the network also fails to give the correct response shortly
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after receiving input (td = 50ms). Intuitively one would assume delayed-response
task difficulty to be monotonically increasing with longer delay periods. Instead we
observe a performance peak at td = 250ms.

One explanation for this behavior can be found in Figure 3.5c, which shows the
dependency of the performance on the decay time of the eligibility trace. We can
again see a performance peak at the default value (τe = 100ms). Towards smaller
values the performance decreases but stays above chance. Towards larger values the
performance also decreases but reaches chance performance (0.6 s ≤ τe ≤ 2 s) and
ultimately falls significantly below chance performance (τe = 5 s). The later extreme
case can be easily explained: once τe is much larger than the intertrial delay (in this
case (1± 0.25) s), the eligibility trace (cij) depends almost as much on past trials as
on the current one. This allows small differences in the mean LTP and LTD traces
(〈xij〉 and 〈yi〉) to dominate the weight change. These difference are introduced by
random deviations in topology and conductance delays. Ultimately this leads to
learning the wrong input-output association in 2 out of 4 runs at τe = 5 s.

The sharp performance decrease on both sides of the peak at τe = 100ms leads to
the hypothesis that a certain ratio between eligibility trace decay and delay period
duration is required to achieve a good performance. To test this hypothesis and
answer the question why the network fails trials with very short delay periods a
modified model with τe = 20ms and td = 50ms has been simulated for 1000 s. The
ratio of τe to td is the same for modified and original model (20ms

50ms
= 100ms

250ms
= 0.4).

It achieved a mean performance of 0.551, supporting the hypothesis.

In Figure 3.5b the amount of dopamine reward σd given after a successful trial
is varied. Although there is a distinct maximum at σd = 50, the network is able
to achieve a performance two standard deviations above chance performance over
more then one order of magnitude: 50 ≤ σd ≤ 1000.

In Figure 3.5d the membrane potential decay constant is varied. Besides the
performance maximum at τu = 50ms, it shows two remarkable facts. First, the still
significant performance at τu = 25ms. The entire model has been build around a
fixed τu = 50ms: the balance between inhibitory and excitatory weights is tuned to
it and without homeostatic mechanisms the network is extremely sensitive regarding
τu (see also section 3.4). Albeit halving τu, a significant above-chance performance
has been achieved. On the other hand, for τu > 50ms the performance quickly
diminishes to chance-level.

This lack of performance coincides with the networks inability to reach the target
frequency of 10 Hz . After 1000 s simulation time, the median of the exponential
frequency average (sampled with τ = 20 s) of 100 random, excitatory neurons of the
default model (τu = 50ms) is 9.54 Hz . For the varied model with τu = 200ms the
median is 5.86 Hz and 6 out of 100 sample neurons have not fired once in the entire
simulation.

One may assume that this is caused by the one-sided limit of IP coefficient Λ1 by
the following line of thought. The network is dominated by inhibition. Increasing
τu increases the time it takes until negative charge due to an inhibitory burst fades
away. To compensate a lack of activity, Λ1 has to decrease. But this ability to
counteract is limited due to the constraint Λ1 > uthresh. But this hypothesis does
not hold: although the Λ1 distribution is shifted towards the minimum for increased
τu, the number of neurons close to Λ1 ≈ uthresh does not qualitatively differ (see
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Appendix Figure 8.2).

3.4 Necessity of model components

The presented model is quite complex, not only in the high dimension of its parame-
ter space, but already by using three different homeostatic mechanisms: an absolute
refractory time (ARF), weight scaling (WS), and intrinsic plasticity (IP). Adhering
to Occams razor requires us to test if all these model components are necessary.
A proof of the question is unobtainable within the limits of this work. The table
below shows all twelve model variants obtained by selectively combining these three
homeostatic mechanisms. For intrinsic plasticity two variants are listed: A full IP,
in which first and second moment are matched to an exponential distribution. And
a mean-only IP, in which only the first moment is matched. The later is the one
used throughout this study.

Each model variant has been tested for various parameter combinations and except
one each showed the same failure conditions independent of the tested parameters.
This can be considered as indication for the simultaneous necessity of all three
homeostatic mechanisms.

Table 3.1: Dominant failure conditions observed in different model variants. See
below for explanation of abbreviations.

without weight scaling with weight scaling
no ARF ARF no ARF ARF

no IP RA RA, SD RA NPI, LPD
mean-only IP RA, NPI NPI RA, NPI -

full IP RA, SD SD RA, SD SD

As depicted in the above table, four typical failure conditions have been isolated:

Runaway activity (RA) The instantaneous frequency of the network increases to
extremely high values. This happens once the current transported by in-flight
spikes surpasses a critical threshold: on arrival they create even more spikes
and inhibition either does not adapt fast enough to compensate the increasing
excitatory current or has saturated its firing rate due to the ARF. If inhibition
is made strong and fast enough to prevent this super-critical excitatory activ-
ity, the inevitable increased frequency during input and readout phase cause
spontaneous death of the network.

Spontaneous death (SD) The network is primarily driven by recurrent, not exter-
nal excitation (the external current is much smaller the internal). If this self-
supporting stream of internal drive is interrupted—even for a short period—it
can result in long periods of almost no network activity (from 100ms to sev-
eral seconds). See Figure 3.6 for an example. Although the network eventually
recovers due to relaxing IP coefficients and random external spikes, no recur-
rent activity survives the SD. Thus no information can be transported across
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Figure 3.6: Example of repeated spontaneous death in a model variant with absolute
refractory time, full IP (λ1 = 10−4, λ2 = 10−8), no weight scaling and
no task-related external stimuli. Shown is the activity of 100 excitatory
(0-99) and 100 inhibitory (100-199) neurons for 2 s, after the network
settled for 100 s. During the longest silence period around t = 100 s
only two excitatory neurons fire within a time span of 101ms—both due
to coinciding external spikes.

an SD boundary. The repeating occurrence of spontaneous deaths keeps the
network in a regime where it is not able to perform its task.

The three observed sources of internal drive interruption leading to sponta-
neous death have been (1) too strong inhibition, (2) a preceding runaway
activity which was ultimately stopped by intrinsic plasticity rules and (3) full
IP, driving neurons to a regime where they become very sensitive to deviations
of current influx.

No performance increase (NPI) The network performance does not exceed chance
level even after extensive training.

Late performance decrease (LPD) The network initially achieves an above-chance
performance, but eventually returns to a chance-like performance after several
hundred seconds. Note that this failure case has been observed only in a small,
carefully tuned parameter region. Outside this region the model variant simply
achieved no performance increase.

The only model variant that achieved an enduring, significantly above-chance
performance required an absolute refractory time, weight scaling and a mean-only
intrinsic plasticity.



4 Discussion

In this work a neural network model for learning delayed response tasks with dopamine-
modulated spike-timing dependent plasticity has been proposed. The model has
been shown to achieve a small but significant above-chance performance after a
brief training period. Due to the small performance increase this result can only
be regarded as proof that learning working memory using a dopamine reward is
possible, but not as argument that this actually is the case in the brain.

The demonstrated delay period (250 ms) is small compared to biological experi-
ments, which delay the readout several seconds [JN37,Fus73,RM02]. But our model
uses the same decay constants for excitatory and inhibitory neurons. Brunel and
Wang, 2001 used a different decay characteristic for both synapse times and in-
creased the decay time of excitatory by a factory 10 over the decay time of inhibitory
synapses. From a biologically point of view this resembles slow pyramidal neurons
and GABAergic fast spiking interneurons, respectively and is thought to be nec-
essary for WM by many authors [BW01, DSS00]. On one hand, this work showed
that this is not a strict requirement for solving a delayed-response task with short
delay periods. On the other hand, the observed performance might increase if this
synapse characteristic is incorporated; From a computational point of view, a slowly
decaying influx of excitatory current is a mechanism for information storage between
spike emission. Without it, the network entirely relies on in-flight spikes and is thus
forced to operate on the time scale of axonal conductance delays.

But this remains speculation, because the mechanism by which the network re-
members the input stimuli has not been identified conclusively. This was compli-
cated by the low performance which caused a small signal-to-noise ratio. Analysis
of two different measurement categories revealed information about the mechanism:
the learned weights after training and the firing rate during a trial.

The performance of the model has been indirectly shown to be very sensitive
regarding the weight distribution; The weight change is linear in the dopamine
reward and halving the optimal dopamine reward has shown to drastically reduce the
response accuracy. This practically rules the model out for explaining how to learn
working memory over long time scales—as observed during childhood [GPAW04].
This would require a learning mechanism that is stable against noise in the synaptic
weight development. On the other hand this sensitivity underlines the importance
of the performed weight analysis, despite the small observed difference over time
and between synapse classes.

The weight increase of connections from input, neutral and output neurons to
output neurons, together with the slightly elevated frequency of correct-output com-
pared to wrong-output and neutral neurons is an indicator that a self-exciting group
of neurons has formed in the group of output neurons. But further investigation is
necessary, especially regarding the question why the elevated activity of the output
neurons does not start until 50ms after the input stimulation is terminated and how

40
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the input stimulus is remembered during this gap.

The time course of the firing rate during a trial can not be compared to bio-
logical observations directly. As observed in vivo, the firing rate of the network
increases during a trial, especially during input and readout phases [RM02]. But
this can be attributed to the intense input and readout stimulation and is thus no
observation but an effect enforced by the experimenter. Besides that, the observed
frequency difference is as low as 2 Hz , compared to as much as 35 Hz observed in
wet experiments [RM02].

This deficiency of incomparability could be eliminated by changing the training
protocol; Instead of applying additional random noise to different groups of neurons
for input and readout stimulation, one could maintain a constant-mean random noise
and only change the fine structure of the external random spikes. One implementa-
tion possibility for this is polychronization—neuron groups exhibiting time-locked
spatiotemporal spike patterns [Izh06]. They have been proposed as a mechanism for
information transmission and storage in working memory tasks [SI10].

Another change to the trainer worth examining relates to the reward function. In
this work a fixed reward was given for each succesfully absolved trial. But research
suggest that one role of dopamine is to encode the difference between expected
reward and actual reward, framing it as reinforcement signal in a reinforcement
learning scheme [MHC04]. Changing the dopamine signal in such a way would
also allow to align our model more closely to the theoretical analysis of dopamine-
modulated STDP by Legenstein, Pecevski, and Maass, 2008: A zero-mean
reward signal is required for the applicability of their results [LPM08].

The most surprising result of this work is that for learning the delayed response
task the decay time of the eligibility trace has to be on the scale of the delay period,
with the optimal ratio at τe/td = 0.4. This ratio implies that the trace of STDP
events from the beginning of a trial have 8% the size of those immediately before the
reward. This can be interpreted as an estimate of the noise resistance of dopamine-
reward mediated learning. Izhikevich demonstrated for several tasks that learning
with dopamine-modulated STDP is resistant to noise in the eligibility trace that is
caused by task-irrelevant spikes, even if the reward comes seconds after the desired
activity. Incidentally these results where obtained with a similar decay/delay-ratio
of τ/ 〈td〉 = 0.5 [Izh07]. Hypothesizing that this optimal ratio is the same in vivo
could allow to infer the eligibility trace decay rate from psychometrical experiments.
This could be used to narrow the range of substances candidates, that implement
the eligibility trace, by comparing their decay times.

The model developed in this work is of a very heterogeneous complexity. This
leaves a lot of room for arbitrary decisions which ultimately reduces significance
and applicability of the findings. The neuron and synapse model used is the sim-
plest spiking neuron model. Reward mechanism and dopamine dynamics are simple
in comparison to the literature, too. Several aspects of the model deviate from
the default approaches found in the literature: External random noise is of small
frequency and high amplitude, instead the other way around [BW01,Izh07]. The in-
trinsic plasticity mechanism used is simple but deviates from the known approaches
and is not thoroughly examined [SJT10]. The used weight scaling approach is espe-
cially delicate; Its complexity widely exceeds the common approach of rescaling all
synapses in fixed time intervals. No use of it outside of this work is known to the
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author. Although it had been verified to maintain a constant weight sum, its effect
on a synapse’s weight depends on the precise order and frequency of spike arrivals.
Synapses that are more active are more often subject to weight scaling. The effect
of this bias has not been examined.

It has been indicated that a simple omission of model components is no viable
approach to increase simplicity and with it the expressiveness of the model. This
leaves two future directions for development of the model: Either the arbitrariness
of the model components is reduced and the model simplified. Or the components
are augmented and parametrized with more in vivo data, to obtain a biologically
more plausible model.

One to deviate from common approaches for IP and weight scaling has been to
maintain the model in a form in which the causal graph analysis could be applied.
But this effort has not paid off. Ultimately the method delivered only two insights
into model: First, that it is driven in a dynamic regime where the deletion of a
single spike arrival leads to a changed neuronal fate with a high probability (25%),
although the neuron receives on the order of 1000 spikes per second. And second,
that this sensitivity slowly declines while training the network. The later can be
explained by the increasing number of synapses with approximately zero weight.

With 25% of all spike-arrivals being 0-egal, the resulting graph is much too dense
for further graph-theoretical analysis. Nonetheless, this isolation of the most essen-
tial spikes may still be a useful building block for future analytical tools. But to
improve the rejection rate of less interesting spikes above the levels achieved in G0

will be difficult; The q-egal annotation described so far was a spatiotemporally local
rule. Future work may use global knowledge to eliminate more redundant spike
arrivals.
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8 Appendix

8.1 Additional graphs
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Figure 8.1: Time dependency of the fraction of 0-egal spikes (Q). Left: Q during
1000 s simulation, measured over 1 s time bins. Right: Mean and stan-
dard deviation of the time course of Q during the 692 training trials of
one 1000 s-simulation with 25ms time bins. Time is relative to the onset
of input stimulation (t = 0 in this graph).
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8.2 RaSimu model description language

The RaSimu software developed within this work uses a domain specific language
(DSL) to allow the rapid formulation of hybrid differential delay equation systems.
These descriptions are then compiled into model-specific programs responsible for
simulation and analysis of the model.

A complete model specification has to declare each model variable, including a
name, a type (e.g. double) and site (e.g. neuron or spike). If the variable is contin-
uous (belongs to the global, neuron or synapse site; compare with section 8.4), an
initial value has to be specified. For temporal evolution and reacting on events, up-
date rules have to be written. If they are omitted, the default rules—constant over
time and no change on events—apply. The syntax for update rule and declaration is:

declaration := type name [= default ];
update-rule := name’ = expression;

Each variable belongs to exactly one site of the simulation: Global, Neuron,
Synapse, GlobalMsg, Spike, RandomSpike or SpikeArrival. The expression in
the update rule is interpreted as C++, except that it can use any variable of the
model, as long as the instance to be accessed is unambiguous: For example a synapse
variable may access a neuron variable of the neuron it belongs to1. The other way
around is not possible in general, because each neuron has several synapses. The
only exception from this rule is during SpikeArrival events: in their case variables
of the affected neuron and synapse may be used. If a tick is appended to a variable—
like Voltage’—this refers to its value after temporal evolution, event application
or post-event condition (depending on the context). Otherwise it refers to the prior
value. Circular dependencies lead to a compiler crash :-)

Each site is described using one or more quant-blocks of the following syntax:

quant-block :=
<discrete|continuous> site { on-block∗ emit-block∗ update-rule∗ }
on-block := on event { update-rule∗ }
emit-block := emit event { condition update-rule∗ }

Using the on-block, one can describe to which events a site is sensitive (for
example a Neuron shall receive RandomSpike events) and how variables of this site
are changed due to the event. Using the emit-block, one can define the condition
under which a site emits an event, with an optional delay. In this case the update
rules define the value of discrete variables of the event to be generated and the
post-event condition of the site’s variables.

The program to parse and transform this DSL into a C++ fragment is shown in
Appendix 8.5.1. It includes the complete, human-readable grammar—for brevity,
several small features have been omitted in the preceding explanation.

1Per definition synapses belong to the postsynaptic neuron
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8.3 Model implementation

const const {
double FireThresho ld = 0 . 0 1 5 ; // [V]
double Tau Voltage = 0 . 0 5 ; // [ s ]
double Re f ractoryPer iod = 0 . 0 0 1 ; // [ s ]
double Tau Dopamine = 0 . 0 0 5 ; // [ s ]
double T a u E l i g i b i l i t y = 0 . 1 ; // [ s ]
double Tau LTP = 0 . 0 1 4 ; // [ s ]
double Tau LTD = 0 . 0 3 4 ; // [ s ]
double Delta LTP = 1 ; // [V]
double Delta LTD = 1 ; // [V]
double DeltaET LTP = 0 .000103 ;
double DeltaET LTD = 0.000055 ;

double MaxWeight = 0 . 0 0 4 ; // [V]
double TargetFreq = 10 ; // [ Hz ]
double LambdaIP1 = 0 .00005 ;
double RandomFreq = 3 . 1 5 ; // [ Hz ]
double RandomSpikeWeight = 0 . 0 1 ; // [V]

}

discrete GlobalMsg {
TrainerT NextTrainer ;

}

continuous Global {
double Dopamine = 0 . 0 ;
TrainerT Trainer = TrainerT ( ) ;
bool ResetSpikeCounter = true ;

Dopamine ’ = Dopamine ∗ exp(−dt / Tau Dopamine ) ;

on GlobalMsg {
Trainer ’ = NextTrainer ;
ResetSpikeCounter ’ = NextTrainer . r e setCounter ;

}

emit GlobalMsg {
default t rue ;
after Trainer ’ . de lay ;

Dopamine ’ = Dopamine + Trainer . reward ;
NextTrainer ’ = Trainer . update ( pc , i nd i c e s , queues , t ) ;

}
}
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continuous Neuron {
double Voltage = 0 . 0 ;
double LTDTrace = 0 . 0 ;
double Re f rac to ryLe f t = 0 . 0 ;
double IPCoef f1 = 0 . 0 ;
double SumWeight = 0 . 0 ; // e x t e r n a l i n i t
double TargetSumWeight = 0 . 0 ; // e x t e r n a l i n i t
Time LastSpike = 0 . 0 ;
u i n t 1 6 t SpikeCounter = 0 ;
RNG: : s e e d t RandomSeed = 0 ; // e x t e r n a l i n i t
bool RandomEnabled = f a l s e ;

Voltage ’ = Voltage ∗ exp(−dt / Tau Voltage ) ;
LTDTrace ’ = LTDTrace ∗ exp(−dt / Tau LTD ) ;
Re f rac toryLe f t ’ = fmax ( 0 . 0 , Re f r a c to ryLe f t − dt ) ;
Moment1 ’ = Moment1 ∗ exp(−dt / Tau MomEst ) ;
SpikeCounter ’ = ResetSpikeCounter ? 0 : SpikeCounter ;

on Sp ikeArr iva l {
SumWeight ’ = SumWeight + DeltaWeight ;
Voltage ’ = Voltage + Weight ;

}

on RandomSpike {
Voltage ’ = Voltage + RandomSpikeWeight ;
RandomEnabled ’ = not i s E x c i t a t o r y ( ) ;

}

emit Spike {
default t rue ;
i f Voltage ’ > FireThresho ld + CP( IPCoef f1 ) ;
i f Ref ractoryLe f t ’ == 0 . 0 ;

LTDTrace ’ = Delta LTD ;
Re f rac toryLe f t ’ = Ref ractoryPer iod ∗ i s E x c i t a t o r y ( )
Voltage ’ = 0 ;
LastSpike ’ = t ;
IPCoeff1 ’ = i s E x c i t a t o r y ( )

? fmax(−FireThreshold , IPCoef f1 − ( t − LastSpike ) ( )
∗ LambdaIP1 ∗ ( TargetFreq − 1 / ( t − LastSpike ) ( ) ) )
: IPCoef f1 ;

SpikeCounter ’ = ResetSpikeCounter ? 0 : SpikeCounter + 1 ;
}

emit RandomSpike {
default f a l s e ;
i f RandomEnabled ’ == true ;
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after RNG: : expo (RandomSeed , 1 . 0 / RandomFreq ) ;

RandomEnabled ’ = f a l s e ;
RandomSeed ’ = RNG: : next (RandomSeed ) ;

}
}

continuous Synapse {
double Weight = 0 . 0 ; // e x t e r n a l i n i t
double DeltaWeight = 0 ;
double TmpDeltaWeight = 0 ;
double E l i g i b i l i t y T r a c e = 0 . 0 ;
double LTPTrace = 0 . 0 ;

E l i g i b i l i t y T r a c e ’ =
E l i g i b i l i t y T r a c e ∗ exp(−dt / T a u E l i g i b i l i t y )
+ ( LastSpike == t ) ∗ DeltaET LTP ∗ LTPTrace ’ ;

LTPTrace ’ = LTPTrace ∗ exp(−dt / Tau LTP ) ;
TmpDeltaWeight ’ = i s V a r i a b l e ( )

? TmpDeltaWeight
+ E l i g i b i l i t y T r a c e ∗ Dopamine
∗ Tau Dopamine ∗ T a u E l i g i b i l i t y
/ ( Tau Dopamine + T a u E l i g i b i l i t y )
∗ ( 1 . 0 − exp ( (−(Tau Dopamine + T a u E l i g i b i l i t y ) )

/ ( Tau Dopamine ∗ T a u E l i g i b i l i t y )
∗ dt ) )

: 0 ;

on Spike {
LTPTrace ’ = LTPTrace + Delta LTP ;
E l i g i b i l i t y T r a c e ’ = E l i g i b i l i t y T r a c e

− DeltaET LTD ∗ LTDTrace ;
}

emit Sp ikeArr iva l {
default t rue ;

Weight ’ = i s V a r i a b l e ( )
? fmin (MaxWeight , fmax (0 ,

( Weight + TmpDeltaWeight )
/ (SumWeight + TmpDeltaWeight )
∗ TargetSumWeight ) )

: Weight ;
DeltaWeight ’ = Weight ’ − Weight ;
TmpDeltaWeight ’ = 0 ;

}
}
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8.4 RaSimu Design Document

RaSimu is a simulator for spiking neural networks implemented primarily in C++11.
It uses the event-driven simulation approach [BRC+07]. This section briefly de-
scribes noteworthy deviations from the common way to implement such a simulator.

8.4.1 Pretext

Before deciding to implement RaSimu, experience with a number of different ap-
proaches to simulate the neural networks described within this thesis has been made:

• using Matlab, based on the model from [Izh07],

• using NEST, augmented with a DA-modulated STDP synapse,

• using custom software written in C++, based around the idea to decouple sim-
ulator, trainer and analysis tools as separate UNIX processes, interconnected
by pipes using a human-readable data format (CSV).

During that experience several shortcomings surfaced (not all points apply to
every approach):

• Model dynamics scattered across several source code files and intermingled
with model-irrelevant implementation details increased the error frequency
and the debugging effort2.

• Available tools were not sufficient to rapidly execute new analysis queries
because either insufficient data availability required a time-consuming rerun
of the simulation with new logging statements, or the amount of anticipatorily
logged data was so big that the simulation was unusably slow (and consumed
to much storage space).

• Indeterministic simulations—where that output of PRNGs depends on the
execution environment—impeded repeatable simulations.

• Simulations where either fast or suitable for rapid prototyping.

This led to the creation of the RaSimu simulator, which alleviates all those short-
coming in exchange for its own significant set of deficiencies. Nonetheless it has to
be acknowledged that implementing a custom neural network simulator for a project
of the size of this thesis is (time-)economically unjustifiable.

8.4.2 Requirements

The requirements for RaSimu were:

1. Allow a dense formulation of the model in a single file, in a language close to
the hybrid differential delay equation systems used in section 2.1.

2In addition the model complexity itself covers subtle bugs easily. It has happened to the author
more than once, that the homeostatic mechanisms counteracted a low-level bug in the simulator
code.
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2. Decouple simulation and analysis: Record enough data during simulation to
later resume it and to allow replaying temporal and spatial subsets of the
simulation with arbitrary precision efficiently.

3. Be completely deterministic.

4. Be fast enough.

8.4.3 Data and computation structure

The simulation has an open number of properties. A property’s value is derived
from its own and other properties’ values of the past using a fixed rule.

Ontological Association Each property has an ontological associated type. It is
instanced for every object of the given type. The type determines further, under
which circumstances the update rule of the property is called and when snapshots of
the properties’ current values are stored. The available ontological types and their
relations are:

The number of instances for each ontological type, as well as the relation between
instances of different type is compile-time fixed—except for the network topology.

Temporal nature All properties of the first row of the above graph are continuous,
all types of second and third row discrete.

For discrete properties, every single event is stored. Continuous properties are
only stored at checkpoints. Checkpoints are roughly at regular time intervals but
fine structured to exactly match the time of incoming events, so that a continuous
property is only stored at moments of modification by an discrete property. This
allows to replay the simulation (or parts of it) exactly, to the level of floating-point
instruction order. Discrete properties are indexed, so that the set of spikes from and
to a certain neuron in a certain time interval can be efficiently determined. Indices
and checkpoints together allow to exactly replay selected parts of the simulation
with constant time overhead.

8.4.4 Implementation

A few implementation-approaches taken to meet the requirement are noteworthy:
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Memory-mapped data structures All data structures are stored in memory-mapped
files. This allows multiple program instances (e.g. different analysis tasks) to
run in parallel and share memory-intensive data, instead of competing for
memory.

Row-wise data layout The data storage for each property is laid out continuously
in memory—instead of storing all properties of one instance and one time
closely together. This allows to only load those properties into memory that
are strictly required for the current task. This reduces the pressure on the
CPU cache.

Compile-, link-, and run-time assertions The programs are build to fail as early as
possible. The type system is used to prevent accidental assignment of instance
pointers of different ontological type, for example. Link-time assertions (code
that fails to link if the compiler is unable to optimize it away) detect circular
dependencies and some illegal data access patterns. Finally, the code is littered
with run-time assertion.

Meta-programming Compile-time template meta-programming and the described
domain specific language are used to automatically construct the necessary
data structures for simulation and several functions, to operate on them, dur-
ing compilation. This allows a compact formulation of the simulation kernel
(see below) and a fast simulation despite a versatile model description lan-
guage, due to compile-time optimizations.

8.5 Source code excerpts

8.5.1 DSL conversion

The following Perl6-code translates the model description from the DSL into
C++-code, that is included in all model dependent parts of RaSimu.

1 #!/ usr / b in / pe r l 6
2 use v6 ;
3
4 grammar DSL {
5 my $e = ”document s t a r t ” ;
6 token TOP { ˆ <i n c lude b l o ck >∗ <quant block>∗ $ }
7
8 token i n c l u d e b l o c k {
9 ’ i n c lude ’ \s+ ’ ” ’ <f i l ename> ’ ” ’ \s∗ ’ ; ’ \s∗

10 }
11 token quant block {
12 <quant type> \s+ <name> \s∗ ’ { ’ \s∗
13 [ [ { $e=$/} <dec l>|<evolve>|<on block>|<emit b lock>|<comment>] \

s ∗ ] ∗
14 \s∗ ’ } ’ \s∗ }
15 token on block {
16 ’ on ’ \s+ <name> \s∗ ’ { ’ \s∗
17 [ [ { $e=$/} <evolve>|<comment>] \s ∗ ] ∗
18 \s∗ ’ } ’ }
19 token emit b lock {
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20 ’ emit ’ \s+ <name> \s∗ ’ { ’ \s∗
21 [ [ { $e=$/} <evolve>|<de fau l t >|<a f t e r >|< i f >|<comment>] \s ∗ ] ∗
22 \s∗ ’ } ’ }
23
24 token dec l { <type> \s+ <name> \s∗ [ ’= ’ \s∗ <expr> \s ∗ ] ? ’ ; ’ }
25 token evo lve { <name>\ ’ \ s ∗ ’= ’ \ s ∗ <expr> \ s ∗ ’ ; ’ }
26 token d e f a u l t { ’ d e f a u l t ’ \ s+ <bool> \ s ∗ ’ ; ’ }
27 token i f { ’ i f ’ \ s+ <name>\ ’ <expr> \ s ∗ ’ ; ’ }
28 token a f t e r { ’ a f t e r ’ \ s+ <expr> \ s ∗ ’ ; ’ }
29 token comment { ’ // ’ \N∗ $$ }
30
31 token name { \w+ }
32 token f i l ename { \w+ }
33 token type { [ ’ : ’ | \w]+ }
34 token quant type { [ ’ d i s c r e t e ’ | ’ cont inuous ’ | ’ const ’ ] }
35 token bool { [ ’ t rue ’ | ’ f a l s e ’ ] }
36 token expr { <−[;{}]>∗ } # MAYBE TODO: improve
37
38 method e r r o r ( ) {
39 return $e ;
40 }
41 }
42
43 sub trans form ( $quant b locks ) {
44 my %quant types ;
45 my %vars ;
46 my %cons t s ;
47 my %r e s = : const ( ’ ’ ) , : d e c l ( ’ ’ ) , : evo lve ( ’ ’ ) , : on ( ’ ’ ) ,
48 : qdq ( ’ ’ ) , : emit ( ’ ’ ) , : gpe ( ’ ’ ) , : gen ( ’ ’ ) , : debug ( ’ ’ ) ;
49
50 my %rawexpr evo lve ;
51
52 # funs to r e p l a c e de f s t r i n g s to C++−Code
53 sub r e p l a c e c o n s t s ( $expr i s copy ) {
54 f o r %cons t s . kv −> $name , $va l {
55 $expr = $expr . subst ( rx/<<$name>>/, ” $va l /∗ $name ∗/” , : g ) ;
56 }
57 return $expr ;
58 }
59
60 sub r e p l a c e d t ( $expr i s copy ) {
61 $expr = $expr . subst ( rx/<< ’ dt ’>>/, ” td ( ) ” , : g ) ;
62 re turn $expr ;
63 }
64
65 sub r e p l a c e e x p r ( $expr i s copy , %l o c a l e x p r s ) {
66 # r e p l a c e post−event vars ONCE
67 f o r %vars . kv −> $prop , $quant {
68 # post event i s only de f ined f o r cont inuous quants
69 next i f %quant types {$quant} eq ’ d i s c r e t e ’ ;
70 $expr = $expr . subst ( rx/<<$prop>>” ’ ” / , ”(% l o c a l e x p r s {$prop }) ” ,

: g ) ;
71 }
72 return $expr ;
73 }
74
75 sub r e p l a c e v a r s ( $expr i s copy ) {
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76 # r e p l a c e normal vars
77 f o r %vars . kv −> $prop , $quant {
78 i f %quant types {$quant} eq ’ cont inuous ’ {
79 $expr = $expr . subst ( rx/<<$prop>>/, ” CP( $prop ) ” , : g ) ;
80 } e l s e {
81 d i e u n l e s s %quant types {$quant} eq ’ d i s c r e t e ’ ;
82 $expr = $expr . subst ( rx/<<$prop>>/, ” DP( $prop ) ” , : g ) ;
83 }
84 }
85 return $expr ;
86 }
87
88 sub r e p l a c e a l l ( $expr i s copy , %l o c a l e x p r s ) {
89 $expr = r e p l a c e c o n s t s (
90 r e p l a c e d t (
91 r e p l a c e v a r s (
92 r e p l a c e e x p r ( $expr , %l o c a l e x p r s ) ) ) ) ;
93 $expr = $expr . subst ( rx /” PROT”>>/, ”q” , : g ) ;
94 re turn $expr ;
95 }
96
97 sub r e p l a c e a l l a f t e r ( $expr i s copy , %l o c a l e x p r s ) {
98 $expr = $expr . subst ( rx /” ’ ”/ , ” PROTTICK” , : g ) ;
99 $expr = r e p l a c e v a r s ( $expr ) ;

100 $expr = $expr . subst ( rx /” PROTTICK”/ , ” ’ ” , : g ) ;
101 re turn r e p l a c e c o n s t s (
102 r e p l a c e e x p r ( $expr , %l o c a l e x p r s ) ) ;
103 }
104
105 # gather a l l p r o p e r t i e s ( r equ i r ed to patch e x p r e s s i o n s )
106 f o r @( $quant b locks ) {
107 my $qc = $ <name>;
108 my $qt = $ <quant type >;
109 %quant types {$qc} = $qt ;
110 f o r @( $ <dec l >) {
111 my $name = $ <name>;
112 i f $qt eq ’ const ’ {
113 i f not %cons t s {$name} {
114 my $type = $ <type>;
115 %cons t s {$name} = $ <expr>;
116 %res<const> ˜= ” const $type $name = $ <expr>;\n” ;
117 }
118 } e l s e {
119 d i e ” mu l t ip l e d e c l a r a t i o n o f $ <name>” i f %(%vars , %cons t s )

{$name } ;
120 %vars {$name} = $qc ;
121 }
122 }
123 f o r @( $ <evolve>) { %rawexpr evo lve {$ <name>} = $ <expr>; }
124 }
125
126 # p r in t d e f i n i t i o n s
127 f o r @( $quant b locks ) {
128 my $qc = $ <name>;
129 my $emit = $ <emit b lock >;
130 my %types ;
131 next i f ( $qc eq ’ const ’ ) ;
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132 %r e s = %r e s << >̃> ”// Quantor : $qc\n” ;
133 f o r @( $ <dec l >) {
134 %types {$ <name>} = $ <type>;
135 i f %quant types{%vars {$ <name>}} eq ’ cont inuous ’ {
136 %res<dec l> ˜=
137 ”GEN CP( $qc , $ <name>, \”$ <name>\”, $ <type>, ( ”
138 ˜ r e p l a c e c o n s t s ( $ <expr>) ˜ ” ) ) ;\n” ;
139 } else {
140 %res<dec l> ˜=
141 ”GEN DP( $qc , $ <name>, \” $ <name>\”, $ <type>) ;\n” ;
142 }
143 }
144 for @( $ <evolve>) {
145 %res<evolve> ˜= ”GEN CP EVOLVE( $ <name>, ”
146 ˜ r e p l a c e a l l ( $ <expr>, %rawexpr evo lve ) ˜ ” ) ;\n” ;
147 }
148 for @( $ <emit b lock >) {
149 my $dqc = $ <name>;
150 my %rawexpr emit =
151 gather for @( $ <evolve>) { take %($ <name>, $ <expr>) ; } ;
152 my %rawexpr a f t e r =
153 gather for @(%vars ) { my $k=$ . key ; take %($k , ” TP( $k ) ” ) ;

} ;
154
155 %res<emit> ˜= ”GEN QUANT EMIT( $qc , $dqc , $ <de fau l t >[0]<bool>)

;\n” ;
156 i f $ <a f t e r >. e lems > 0 {
157 %res<emit> ˜=
158 ”GEN QUANT HASVARDELAY( $dqc ) ;\n”
159 ˜ ”GEN DP DELAY( $dqc , $qc , ”
160 ˜ r e p l a c e a l l a f t e r ( $ <a f t e r >[0]< expr>, %rawexpr a f t e r )
161 ˜ ” ) ;\n” ;
162 }
163 for @( $ <evolve>) {
164 die ”$ <name> o f %vars {$ <name>} != $qc , $dqc”
165 unless (%vars {$ <name>} eq $dqc ) | | (%vars {$ <name>} eq $qc

) ;
166 %res<gpe> ˜=
167 ”GEN CP GENERATE( $qc , $dqc , $ <name>) \{ ”
168 ˜ ” value = ” ˜ r e p l a c e a l l ( $ <expr>, %rawexpr emit )
169 ˜ ” ; \}\} ;\n” ;
170 }
171 }
172 for @( $ <on block>) {
173 my $ s rc quant = $ <name>;
174 %res<qdq> ˜= ”GEN QDQ( $ <name>, $qc ) ;\n” ;
175 my %i s e v o l v e d ;
176 my %rawexpr on =
177 gather for @( $ <evolve>) { take %($ <name>, $ <expr>) ; } ;
178 for @( $ <evolve>) {
179 my $dprop = $ <name>;
180 %res<on> ˜= ”GEN CP APPLY( $dprop , $src quant , t rue ) \{\n”
181 ˜ ” const %types {$dprop} tmp = ”
182 ˜ r e p l a c e a l l ( $ <expr>, %rawexpr on ) ˜ ” ;\n”
183 ˜ ” t r a n s a c t i o n . template set<$dprop>(tmp) ;\n” ;
184 for @( $emit ) {
185 my $dst quant = $ <name>;
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186 my %rawexpr emit =
187 gather for @( $ <evolve>) { take %($ <name>, $ <expr>) ;

} ;
188 for @( $ <i f >) {
189 i f $ <name> eq $dprop {
190 %res<on> ˜= ” i n t e n t . template get<$dst quant >()”
191 ˜ ” . combine (tmp” ˜ r e p l a c e c o n s t s ( $ <expr>)
192 ˜ ” ) ;\n” ;
193 }
194 }
195 }
196 %res<on> ˜= ” \}\} ;\n” ; # s i c !
197 %i s e v o l v e d {$dprop} = True ;
198 }
199 for @( $emit ) {
200 my $dst quant = $ <name>;
201 for @( $ <i f >) {
202 unless %i s e v o l v e d {$ <name>} {
203 # HINT: use CP fo r acces s because the va lue i s

unchanged
204 %res<on> ˜=
205 ”GEN CP APPLY( $ <name>, $src quant , f a l s e ) \{\n”
206 ˜ ” i n t e n t . template get<$dst quant >()”
207 ˜ ” . combine ( CP( $ <name>)” ˜ r e p l a c e c o n s t s ( $ <expr>)
208 ˜ ” ) ;\n\}\} ;\n” ;
209 }
210 }
211 }
212 }
213 }
214
215 # crea t e l i s t o f
216 %res< l i s t s > =
217 ” typede f boost : : mpl : : l i s t <\n\ t ”
218 ˜ %vars . keys .map({ ” boost : : mpl : : pa ir<$ , boost : : mpl : : boo l <true

>>” }) . join ( ” ,\n\ t ” )
219 ˜ ”\n> a l l ;\n\n”
220 ˜ ” typede f boost : : mpl : : l i s t <\n\ t ”
221 ˜ %vars . keys .map({ ” boost : : mpl : : pa ir<$ , boost : : mpl : : boo l <f a l s e

>>” }) . join ( ” ,\n\ t ” )
222 ˜ ”\n> a l l r o ; ” ;
223
224 # push r e s u l t s
225 %r e s = %r e s << >̃> ”\n” ;
226 say ”#i f n d e f RASIMU SIMULATION DEFINITION
227 #d e f i n e RASIMU SIMULATION DEFINITION
228
229 #inc lude \” core / p rope r ty abbreva t i on s beg in . hpp\”
230
231 namespace ModelConsts \{
232 %res<const>
233 \}
234 %res<dec l>
235 %res<evolve>
236 %res<on>
237 %res<qdq>
238 %res<emit>
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239 %res<gen>
240 %res<gpe>” , ”
241
242 namespace L i s t s \{
243 %res< l i s t s >” , ”
244 \}
245
246 // generated by ” , qqx{ pe r l 6 −−v e r s i on | grep ve r s i on } , ”
247
248 /∗ DEBUG MSGS
249 %res<debug>
250 ∗/
251 #inc lude \” core / proper ty abbrevat i ons end . hpp\”
252 #e n d i f // RASIMU SIMULATION DEFINITION” ;
253 }
254
255 sub parse ( $ s r c ) {
256 my $p = DSL. new ;
257 i f $p . parse ( s l u rp $ s r c ) {
258 my @qbs = @($<quant block>) ;
259 for @($<i n c lude b l o ck >) {
260 @qbs . push( parse ( $ <f i l ename> ˜ ” . model” ) ) ;
261 }
262 return @qbs ;
263 } else {
264 die ” Error a f t e r :\n” , $p . e r r o r ;
265 }
266 }
267
268 sub MAIN( $ s r c ) {
269 trans form ( parse ( $ s r c ) ) ;
270 }

8.5.2 Simulation

The following code show the simulation kernel, that generates the data used in later
analysis. A lot of C++ boilerplate code has been omitted in this and all following
code excerpts.

1 template<typename PropList>
2 struct SimLoop {
3 typedef PropertyComposition<PropList> pc t ;
4
5 SimLoop ( )
6 : i n d i c e s ( ) ,
7 queues ( )
8 {}
9

10 bool run ( const Time unt i l , u i n t 6 4 t maxEvents ) a t t r i b u t e ( (
n o i n l i n e ) ) {

11 Time old ( queues . min ( ) ) ;
12 while ( queues . min ( ) <= u n t i l && maxEvents ) {
13 a s s e r t ( o ld <= queues . min ( ) ) ;
14 o ld = queues . min ( ) ;
15 switch ( queues . minType ( ) ) {
16 #define HT(T) case RuntimeID<T> : : va lue : handleEvent<T>() ; break ;
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17 HT( Sp ikeArr iva l ) ;
18 HT( Spike ) ;
19 HT( RandomSpike ) ;
20 HT( GlobalMsg ) ;
21 #undef HT
22 default : a s s e r t ( fa l se ) ;
23 }
24 maxEvents−−;
25 }
26 return maxEvents ;
27 }
28
29 template<typename Quant>
30 inl ine void handleEvent ( ) {
31 typedef typename QuantDestinationQuant<Quant> : : type DstQuant ;
32 Time ct ( queues . min ( ) ) ;
33 Event<Quant> &event = queues . get<Quant>() ( c t ) . minPayload ( ) ;
34 Ptr<DstQuant> dst ( event . dst ( topo logy ) ) ;
35
36 // d e l i e v e r the event and check i f to c r ea t e new even t s
37 Del ieverContext<Quant , DstQuant> de l i eve rContext ( event . i n s t anc e ( ) ,

dst ) ;
38 PLA Apply<Quant , DstQuant , pc t> apply ( ct , de l i eve rContext ) ;
39 pc . c a l l ( apply ) ;
40
41 // i f we c rea t e any even t s
42 i f ( apply . generateAny ( ) ) {
43 // evo l v e a l l e n t i t i e s which depend on our pre−event va l u e s
44 Evolve<DstQuant>() ( pc , ct , dst ) ;
45
46 // compute de lay va l u e s ( they r e qu i r e acces s to the pre− and
47 // post−event va l u e s and can thus on ly be computed here )
48 apply . computeDelay ( pc ) ;
49 }
50
51 // commit data c a l c u l a t e d during app ly
52 // t h i s i s necessary because c h i l d s are on ly e v e n t u a l l y evo lved ,
53 // but r e qu i r e the pre−event va l u e s o f the in s tance we are
54 // committing to now
55 apply . commit ( pc ) ;
56
57 // genera te even t s and compute d i s c r e t e p r o p e r t i e s
58 #define MGE(DQ) \
59 i f ( apply . template generate<DQ>() ) \
60 generateEvent<DstQuant , DQ, Quant> ( ct , dst , apply ) ;
61
62 MGE( GlobalMsg ) ;
63 MGE( Spike ) ;
64 MGE( RandomSpike ) ;
65 #undef MGE
66 i f ( apply . template generate<SpikeArr iva l >() )
67 generateSAEvent ( ct , event , apply ) ;
68
69 i f ( boost : : i s same<Quant , Spike > : : va lue ) {
70 // r e i n s e r t s p i k e to ge t to the next neuron ; a l s o hand les
71 // removing curren t min element from the queue ( because o f a
72 // race cond i t i on )
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73 r e i n s e r t S p i k e ( ct , FORCE CONV( Event<Spike>, event ) ) ;
74 } else {
75 queues . removeLocalMin<Quant>( c t ) ;
76 }
77 }
78
79 template<typename ContQuant , typename EventQuant , typename SrcEvQuant

>
80 inl ine void generateEvent (Time ct ,
81 typename ContQuant : : i n s t a n c e p t r t src ,
82 PLA Apply<SrcEvQuant , ContQuant , pc t> &apply ) {
83 // genera te new d i s c r e t e quant in s tance
84 Time eventTime = ct + apply . template getDelay<EventQuant>() ;
85 Ptr<EventQuant> ptrNE ( i n d i c e s . get<Index<EventQuant>>() . add ( ct ,

eventTime , s r c ) ) ;
86 EmitContext<ContQuant , EventQuant> emitContext ( src , ptrNE ) ;
87 PLA Generate<ContQuant , EventQuant , i n d i c e s t , queues t>
88 p la gen ( ct , emitContext , i n d i c e s , queues ) ;
89 pc . c a l l ( p la gen ) ;
90
91 // genera te new event
92 i f ( l i k e l y ( ( not Topologica lEventDiscard<ContQuant , EventQuant>() (

topology , s r c ) ) ) )
93 queues . i n s e r t
94 ( ct ,
95 eventTime + Topolog ica lTimeOffset<ContQuant , EventQuant>() (

topology , s r c ) ,
96 Event<EventQuant>(eventTime , src , ptrNE ) ) ;
97 }
98
99 template<typename EventT , typename ContQuant , typename SrcEvQuant>

100 inl ine void generateSAEvent (Time ct ,
101 EventT &rawEvent ,
102 PLA Apply<SrcEvQuant , ContQuant , pc t> &apply ) {
103 // garantuee t ha t we are c a l l e d by sp i k e event and ca s t a l i k e
104 a s s e r t ( ( boost : : i s same<EventT , Event<Spike>>:: va lue ) ) ;
105 a s s e r t ( ( boost : : i s same<ContQuant , Synapse > : : va lue ) ) ;
106 Event<Spike> &event (FORCE CONV( Event<Spike>, rawEvent ) ) ;
107 Ptr<Synapse> s r c ( event . dst ( topo logy ) ) ;
108
109 // c a l c u l a t e the SA−p t r
110 Ptr<SpikeArr iva l> ptrNE ( event . i n s t anc e ( ) , event . o f f s e t ) ;
111
112 // genera te a l l SA p r op e r t i e s ( excep t v o l t a g e d i f f e r e n c e )
113 EmitContext<Synapse , Sp ikeArr iva l> emitContext ( src , ptrNE ) ;
114 PLA Generate<Synapse , Sp ikeArr iva l , i n d i c e s t , queues t>
115 p la gen ( ct , emitContext , i n d i c e s , queues ) ;
116 pc . c a l l ( p la gen ) ;
117
118 // genera te event and add to queues
119 queues . i n s e r t ( ct , ct , Event<SpikeArr iva l >( src , ptrNE ) ) ;
120 }
121
122 inl ine void r e i n s e r t S p i k e (Time ct , Event<Spike> &event ) {
123 // TODO ( opt imize ) : reuse the curren t event
124 Event<Spike > : : o f f s e t t o f f s e t ( event . o f f s e t + 1) ;
125
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126 i f ( u n l i k e l y ( ( topo logy . synapse ( event . src , o f f s e t ) ( ) == Topology : :
n i l ( ) ( ) ) ) ) {

127 queues . removeLocalMin<Spike>( c t ) ;
128 } else {
129 // crea t e new event ( depends on o ld )
130 Event<Spike> newEvent
131 ( event . baseTime ,
132 event . src ,
133 event . sp ike ,
134 o f f s e t ) ;
135
136 // d e l e t e o ld event ; t h i s must happen be f o r e i n s e r t i o n o f the
137 // new event to avoid race in case o f equa l t imes
138 queues . removeLocalMin<Spike>( c t ) ;
139
140 // i n s e r t new event
141 queues . i n s e r t
142 ( ct ,
143 newEvent . baseTime + topology . time ( newEvent . src , o f f s e t ) ,
144 newEvent ) ;
145 }
146 }
147
148 void sync ( ) {
149 // TODO: sync a l l or remove method
150 pc . ca s t ( PLA Sync{}) ;
151 i n d i c e s . get<Index<GlobalMsg>>() . sync ( ) ;
152 queues . get<GlobalMsg>() . sync ( ) ;
153 }
154
155 Time currentTime ( ) {
156 return queues . min ( ) ;
157 }
158
159 /// p e r s i s t a n t data s t o rage ( ho l d s every mmap ’ ed data s t r u c t u r e )
160
161 // p r o p e r t i e s
162 pc t pc ;
163 Topology topology ;
164
165 // i nd i c e s
166 template<typename T> struct index f rom type {
167 typedef Index<T> type ;
168 } ;
169 typedef typename boost : : mpl : : transform<
170 DiscreteQuantorLis t ,
171 index from type<boost : : mpl : : >
172 > : : type i n d i c e s l i s t t ;
173 typedef typename UnpackTypeList<TypeSet , i n d i c e s l i s t t > : : type

i n d i c e s t ;
174 i n d i c e s t i n d i c e s ;
175
176 // event queues
177 typedef MultiQueue<
178 Time , Event , Di sc re teQuantorL i s t
179 > queues t ;
180 queues t queues ;
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181 } ;

8.5.3 Replay

The replay kernel shown below is used to generate the time-course of model vari-
ables during a user-specified spatiotemporal subset of the simulation with arbitrary
temporal resolution.

1 /// f a c t o r y d e f i n i n g which d i s c r e t e quants we have to cons ider
2
3 template<typename ReplayQuant>
4 struct MultiQueueFactory ;
5
6 template<>
7 struct MultiQueueFactory<Global> {
8 typedef l i s t <GlobalMsg> dependenc ies ;
9 typedef MultiQueue<Time , F i l te rPay load , dependencies , F i l t e rConta ine r

> type ;
10 typedef IdL i s t<Ptr<Global > : : p t r t> i d l i s t t ;
11 stat ic type in s t anc e ( i d l i s t t &, const Time time ) {
12 return type ( time ) ;
13 }
14 } ;
15
16 template<>
17 struct MultiQueueFactory<Neuron> {
18 typedef l i s t <GlobalMsg , Spike , RandomSpike , Sp ikeArr iva l>

dependenc ies ;
19 typedef MultiQueue<Time , F i l te rPay load , dependencies , F i l t e rConta ine r

> type ;
20 typedef IdL i s t<Ptr<Neuron> : : p t r t> i d l i s t t ;
21 stat ic type in s t anc e ( i d l i s t t ids , const Time time ) {
22 return type ( F i l t e r<GlobalMsg> ( time ) ,
23 F i l t e r<Spike> ( ids , time ) ,
24 F i l t e r<RandomSpike> ( ids , time ) ,
25 F i l t e r<SpikeArr iva l >( ids , time ) ) ;
26 }
27 } ;
28
29 template<>
30 struct MultiQueueFactory<Synapse> : MultiQueueFactory<Neuron> {
31 typedef IdL i s t<Ptr<Synapse > : : p t r t> i d l i s t t ;
32 stat ic type in s t anc e ( i d l i s t t id s synapse , Time time ) {
33 MultiQueueFactory<Neuron> : : i d l i s t t id s neuron ;
34 for (auto syn : i d s synaps e )
35 ids neuron . i n s e r t ( Ptr<Synapse>(syn ) . extractNeuron ( ) ( ) ) ;
36 return MultiQueueFactory<Neuron> : : i n s t anc e ( ids neuron , time ) ;
37 }
38 } ;
39
40 /// temp la te b ra in fuck to prevent i n s t anc ing unnecessary handleEvents

<>()
41
42 template<typename ReplayQuant , typename Quant>
43 struct MaybeHandleEvent {
44 template<typename Q> struct HandleEvent {
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45 template<typename Sim> void operator ( ) ( Sim &sim ) {
46 sim . template handleEvent<Q>() ;
47 }
48 } ;
49
50 struct IgnoreEvent {
51 template<typename Sim> void operator ( ) ( Sim &sim ) {}
52 } ;
53
54 typedef typename conta ins<
55 typename MultiQueueFactory<ReplayQuant > : : dependencies ,
56 Quant> : : type i sRe l evant ;
57 typedef typename i f <i sRe levant ,
58 HandleEvent<Quant>,
59 IgnoreEvent
60 > : : type impl ;
61 } ;
62
63
64 /// e x t r a c t neurons from a r b i t r a r y id l i s t
65 template<typename Quant> struct ExtractNeuronIDs ;
66
67 template<>
68 struct ExtractNeuronIDs<Global> {
69 IdLi s t<Ptr<Neuron> : : p t r t> operator ( ) ( IdL i s t<Ptr<Global > : : p t r t> &)

{
70 return IdL i s t<Ptr<Neuron> : : p t r t >() ;
71 }
72 } ;
73
74 template<>
75 struct ExtractNeuronIDs<Neuron> {
76 IdLi s t<Ptr<Neuron> : : p t r t> operator ( ) ( IdL i s t<Ptr<Neuron> : : p t r t> &

s r c ) {
77 return s r c ;
78 }
79 } ;
80
81 template<>
82 struct ExtractNeuronIDs<Synapse> {
83 IdLi s t<Ptr<Neuron> : : p t r t> operator ( ) ( IdL i s t<Ptr<Synapse > : : p t r t> &

s r c ) {
84 IdLi s t<Ptr<Neuron> : : p t r t> r e s ;
85 for (auto id : s r c )
86 r e s . i n s e r t ( Ptr<Synapse>( id ) . extractNeuron ( ) ( ) ) ;
87 return r e s ;
88 }
89 } ;
90
91 /// the prec ious r ep l ay
92
93 template<typename PropList , typename ReplayQuant ,
94 template<class , class> class EventHandler = MaybeHandleEvent>
95 struct SimReplay {
96 typedef PropertyComposition<PropList> PropComp ;
97 typedef Checkpoint<Void , 1> Cp;
98 typedef IdL i s t<typename Ptr<ReplayQuant > : : p t r t> i d l i s t t ;
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99 typedef IdL i s t<typename Ptr<Neuron> : : p t r t> n e u r o n l i s t t ;
100
101 SimReplay ( i d l i s t t ids , Time s t a r t )
102 // we need the prev ious checkpo in t i n t e r v a l
103 : c t (Cp : : i n t e r v a l ( ) ∗ ( std : : max( ( const u i n t 3 2 t ) 1 , Cp : : binTime (

s t a r t ) ) − 1) ) ,
104 i d s ( i d s ) ,
105 neurons ( ExtractNeuronIDs<ReplayQuant>() ( i d s ) ) ,
106 queues ( std : : move( MultiQueueFactory<ReplayQuant > : : i n s t anc e ( ids , c t

) ) )
107 {
108 // i n i t va l u e s o f our quant
109 pc . ca s t ( PLA InitByCopy{ ct }) ;
110
111 // forward p r e c i s e l y to the r e que s t time
112 run ( s ta r t , −1) ;
113 }
114
115 template<typename Prop>
116 typename Prop : : type get ( Ptr<ReplayQuant> id , Time t ) {
117 a s s e r t ( t >= ct ) ;
118 a s s e r t ( i d s . count ( id ( ) ) ) ;
119 run ( t , −1) ;
120 typedef ContinuousContext<ReplayQuant> Ctx ;
121 PLA Get<Prop , Ctx> p l a g e t ( t , Ctx ( id ) ) ;
122 return pc . c a l l ( p l a g e t ) ;
123 }
124
125 bool run ( const Time unt i l , u i n t 6 4 t maxEvents ) {
126 a s s e r t ( u n t i l != Time : : never ( ) ) ;
127 while ( queues . min ( ) <= u n t i l && maxEvents ) {
128 ct = queues . min ( ) ;
129 switch ( queues . minType ( ) ) {
130 #define HT(T) case RuntimeID<T> : : va lue : typename EventHandler<

ReplayQuant , T> : : impl ( ) (∗ this ) ; break ;
131 HT( Sp ikeArr iva l ) ;
132 HT( Spike ) ;
133 HT( RandomSpike ) ;
134 HT( GlobalMsg ) ;
135 #undef HT
136 default : a s s e r t ( fa l se ) ;
137 }
138 −−maxEvents ;
139 }
140 return maxEvents ;
141 }
142
143 template<typename Quant>
144 inl ine bool handleEvent ( ) {
145 typedef typename QuantDestinationQuant<Quant> : : type DstQuant ;
146 typename CalcDPtr<Quant> : : type s r c ( queues . get<Quant>() . minPayload ( )

. s r c ) ;
147 Ptr<DstQuant> dst ( queues . get<Quant>() . minPayload ( )

. dst ) ;
148
149 // d e l i e v e r the event and check i f to c r ea t e new even t s
150 Del ieverContext<Quant , DstQuant> de l i eve rContext { src , dst } ;
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151 PLA Apply<Quant , DstQuant , PropComp> apply ( ct , de l i eve rContext ) ;
152 pc . c a l l ( apply ) ;
153
154 // crea t e even t s
155 i f ( apply . generateAny ( ) ) {
156 // determine how much we have to s imu la t e :
157 i f ( i s same<ReplayQuant , Global > : : va lue ) {
158 // − g l o b a l r ep l ay don ’ t needs any c h i l d s
159 pc . ca s t ( PLA Evolve<Global>{ContinuousContext<Global>{Ptr<Global

>{}} , c t }) ;
160 } else {
161 i f ( i s same<DstQuant , Global > : : va lue ) {
162 // − neuron/ synapse r ep l ay needs g l o b a l and s e l e c t e d neurons
163 for (auto id : neurons )
164 Evolve<Neuron>() ( pc , ct , Ptr<Neuron>{ id }) ;
165 pc . ca s t ( PLA Evolve<Global>{ContinuousContext<Global>{Ptr<Global

>{}} , c t }) ;
166 } else {
167 // − neuron/ synapse e vo l v e happens as usua l
168 Evolve<DstQuant>() ( pc , ct , dst ) ;
169 }
170 }
171 }
172 // commit data c a l c u l a t e d during app ly
173 // t h i s i s necessary because c h i l d s are on ly e v e n t u a l l y evo lved ,
174 // but r e qu i r e the pre−event va l u e s o f the in s tance we are
175 // committing to now
176 apply . commit ( pc ) ;
177
178 // c a l l the cont inuous proper ty r e l a t e d post−event t r i g g e r s to
179 // update s t a t e
180 #define HGE(Q) \
181 i f ( apply . template generate<Q>() ) \
182 handleEventGeneration<DstQuant , Q, Quant>(ct , dst , apply ) ;
183
184 HGE( GlobalMsg ) ;
185 HGE( Spike ) ;
186 HGE( RandomSpike ) ;
187 HGE( Sp ikeArr iva l ) ;
188 #undef HGE
189
190 queues . template removeMin<Quant>( c t ) ;
191
192 return apply . template generate<Spike >() ;
193 }
194
195 template<typename ContQuant , typename EventQuant , typename SrcEvQuant

>
196 inl ine void handleEventGeneration (Time ct , Ptr<ContQuant> src ,
197 PLA Apply<SrcEvQuant , ContQuant , PropComp> &)
198 {
199 Void nix ;
200 pc . ca s t ( PLA Generate<ContQuant , EventQuant , Void , Void>
201 ( ct , EmitContext<ContQuant , EventQuant>( src , Ptr<EventQuant

>(−1) ) ,
202 nix , nix ) ) ;
203 }



70 8.5 Source code excerpts

204
205 Time currentTime ( ) {
206 return ct ;
207 }
208
209 /// ephermal s t a t e
210 Time ct ;
211 i d l i s t t i d s ;
212 n e u r o n l i s t t neurons ;
213 typename MultiQueueFactory<ReplayQuant > : : type queues ;
214 PropComp pc ;
215 } ;

8.5.4 egal-Annotation

The code to compute the set of 0-egal spikes arrival is shown below. It is based on
the replay kernel above.

1 // d i s c r e t e proper ty Egal
2 struct Egal {
3 typedef u i n t 8 t type ;
4 typedef Sp ikeArr iva l quant ;
5 typedef Sp ikeArr iva l : : i n s t a n c e p t r t i n s t a n c e p t r t ;
6 stat ic const u i n t 3 2 t s i z e = 2 ;
7 stat ic const char∗ const name ;
8 } ;
9 const char∗ const Egal : : name = ”Egal ” ;

10
11 namespace MC = ModelConsts ;
12
13 template<typename PropList> struct SimCausal ity ;
14
15 template<typename ReplayQuant , typename Quant>
16 struct MaybeTrackEvent {
17 template<typename Sim>
18 void operator ( ) ( Sim &sim ) {
19 // we handle every event but on ly t rack those a f f e c t i n g neurons
20 auto &sg = static cast<SimCausality<typename Sim : : PropComp : :

p r o p e r t i e s t >&>(sim ) ;
21 i f ( i s same<Quant , Sp ikeArr iva l > : : va lue ) {
22 sg . handleSA ( ) ;
23 } else i f ( i s same<Quant , RandomSpike> : : va lue ) {
24 sg . handleRand ( ) ;
25 } else {
26 sim . template handleEvent<Quant>() ;
27 }
28 }
29
30 typedef MaybeTrackEvent<ReplayQuant , Quant> impl ;
31 } ;
32
33 template<typename PropList>
34 struct SimCausal ity : public SimReplay<PropList , Neuron ,

MaybeTrackEvent> {
35 typedef SimReplay<PropList , Neuron , MaybeTrackEvent> Super ;
36 using Super : : queues ;
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37 using Super : : pc ;
38 using Super : : c t ;
39 using Super : : handleEvent ;
40
41 SimCausal ity (Time s t a r t )
42 : Super ( IdL i s t<u int16 t >((char∗) ”0−999” ) , s t a r t ) ,
43 totalMarks {} ,
44 trueMarks {} ,
45 inact iveNeurons (1000) ,
46 hasFired {}
47 {
48 i f ( s t a r t == Time (0) ) {
49 // s p e c i a l case : a t t=0 a l l neurons are have zero membrane
50 // v o l t a g e and can be used f o r ana l y s i s b e f o r e f i r i n g the f i r s t
51 // time
52 inact iveNeurons = 0 ;
53 for ( int i =0; i <1000; i++)
54 hasFired [ i ] = true ;
55 }
56 }
57
58 bool run ( const Time unt i l , u i n t 6 4 t maxEvents ) a t t r i b u t e ( (

n o i n l i n e ) ) {
59 return Super : : run ( unt i l , maxEvents ) ;
60 }
61
62 void handleRand ( ) {
63 Ptr<Neuron> neuron ( queues . get<RandomSpike>() . minPayload ( ) . dst ) ;
64 Ptr<SpikeArr iva l> fakeSA ( Index<SpikeArr iva l > : : n i l ( ) ) ;
65 hand l eD i f f ( neuron , fakeSA , MC: : RandomSpikeWeight ,
66 &SimCausality<PropList > : : template handleEvent<RandomSpike>) ;
67 }
68
69 void handleSA ( ) {
70 auto &event ( queues . get<SpikeArr iva l >() . minPayload ( ) ) ;
71 Ptr<SpikeArr iva l> sa ( event . s r c . get<0>() ) ;
72 Ptr<Synapse> syn ( event . s r c . get<1>() ) ;
73 Ptr<Neuron> neuron ( event . dst ) ;
74 PLA Get<Weight> getWeight ( ct , syn ) ;
75 Weight : : type weight ( pc . c a l l ( getWeight ) ) ;
76 hand l eD i f f ( neuron , sa , weight ,
77 &SimCausality<PropList > : : template handleEvent<SpikeArr iva l >)

;
78 }
79
80 void hand l eD i f f ( Ptr<Neuron> neuron , Ptr<SpikeArr iva l> sa , Voltage : :

type d i f f ,
81 bool ( SimCausal ity<PropList > : :∗ handleEvent ) ( ) ) {
82 PLA Get<Voltage> getVoltage ( ct , neuron ) ;
83 PLA Get<IPCoeff1> get IPCoef f1 ( ct , neuron ) ;
84 Voltage : : type preEventVoltage ( pc . c a l l ( getVoltage ) ) ;
85 IPCoef f1 : : type ipCoe f f 1 ( pc . c a l l ( get IPCoef f1 ) ) ;
86 bool evokedSpike = ( this−>∗handleEvent ) ( ) ;
87 auto &openExc ( this−>openExc [ neuron ( ) ] ) ;
88 auto &openInh ( this−>openInh [ neuron ( ) ] ) ;
89
90 i f ( ! hasFired [ neuron ( ) ] ) {
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91 i f ( evokedSpike ) {
92 hasFired [ neuron ( ) ] = true ;
93 inact iveNeurons−−;
94 i f ( ! inact iveNeurons )
95 las tNeuronAct ivat ion = ct ;
96 }
97 return ;
98 }
99

100 i f ( evokedSpike ) {
101 // check exc . l i s t a ga in s t v o l t a g e d i f f
102 Time wntGap = ct + wntNorm( d i f f + preEventVoltage
103 − MC: : FireThresho ld − i pCoe f f 1 ) ;
104 for (auto i = openExc . lower bound (wntGap) ;
105 i != openExc . end ( ) ; ) {
106 mark ( i−>second , 0) ;
107 openExc . e r a s e ( i++) ;
108 }
109
110 // mark own sp i k e
111 mark ( sa , 0) ;
112
113 // mark remainig inh/ exc s p i k e s as q>0, c l e a r b u f f e r s
114 for (auto i : openExc ) mark ( i . second , 1) ; openExc . c l e a r ( ) ;
115 for (auto i : openInh ) mark ( i . second , 1) ; openInh . c l e a r ( ) ;
116 } else {
117 i f ( d i f f < 0) {
118 // add to inh . l i s t
119 Time wnt = ct + wntNorm(− d i f f ) ;
120 openInh . i n s e r t ( std : : make pair (wnt , sa ) ) ;
121 } else {
122 // add to exc . l i s t
123 Time wntSe l f = ct + wntNorm( d i f f ) ;
124 openExc . i n s e r t ( std : : make pair ( wntSel f , sa ) ) ;
125
126 // check inh . l i s t a ga in s t v o l t a g e gap
127 PLA Get<Voltage> p l a g e t ( ct , neuron ) ;
128 Voltage : : type vo l tage = pc . c a l l ( p l a g e t ) ;
129 Time wntGap = ct + wntNorm(MC: : FireThresho ld + ipCoe f f 1 − vo l tage ) ;
130 for (auto i = openInh . lower bound (wntGap) ;
131 i != openInh . end ( ) ; ) {
132 mark ( i−>second , 0) ;
133 openInh . e r a s e ( i++) ;
134 }
135 }
136 }
137 }
138
139 void mark( Ptr<SpikeArr iva l> ptr , bool m) {
140 bool isSA = ptr ( ) != Index<SpikeArr iva l > : : n i l ( ) ;
141 totalMarks [ isSA ]++;
142 trueMarks [ isSA ] += !m;
143 i f ( isSA )
144 egalPC . ca s t ( PLA Set<Egal>(ptr , 1+m) ) ; // unset va l u e s are encoded

as zero
145 }
146



8 Appendix 73

147 Time wntNorm( Voltage : : type d i f f ) {
148 return MC: : Tau Voltage ∗ l og ( d i f f ) ;
149 }
150
151 PropertyComposition<boost : : mpl : : l i s t <
152 boost : : mpl : : pa ir<Egal , boost : : mpl : : boo l <true>>
153 >> egalPC ;
154 u i n t 6 4 t totalMarks [ 2 ] ,
155 trueMarks [ 2 ] ;
156 u i n t 1 6 t inact iveNeurons ;
157 Time las tNeuronAct ivat ion ;
158 bool hasFired [ maxNeurons ] ;
159 std : : multimap<Time , Ptr<SpikeArr iva l>> openInh [ maxNeurons ] , openExc [

maxNeurons ] ;
160 } ;
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